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The dynamics of a driven spin-boson model is studied by means of the perturbation approach based on a
unitary transformation. Analytical expressions for the population difference and the coherence of the two state
system are obtained. The results show that for weak driving, the population difference displays damping
coherent oscillation and/or damping quantum beat, depending on the initial preparation. The coherence exhibits
damped oscillation with Rabi frequency. When driving is strong enough, the population difference exhibits
undamped large-amplitude coherent oscillation. In addition, our theory leads to correct results in two limiting
cases: without dissipation and without driving field.
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I. INTRODUCTION

Discrete electronic states of qubits can be considered as
two state systems �TSS� relating to the potential use of build-
ing blocks of prospective quantum logic gates �1,2�. Cou-
pling of solid-state qubits, including superconducting �3–6�
and semiconducting �7–10� ones, to environmental degrees
of freedom potentially leads to dephasing. The development
of techniques to retain coherence in the qubits is a key point
for a successful implementation of quantum information pro-
cessing in these systems.

By means of the development of local spectroscopy tech-
niques, the atomiclike optical properties of semiconductor
quantum dots �charge qubit� or a superconducting ring �flux
qubit� have been intensively studied. The group of Stievater
reported the first observation of Rabi oscillations from exci-
tons confined to a single GaAs/Al0.3Ga0.7As quantum dot
�QD� �11�. Besombes et al. optically controlled the charge
state of a single QD and coherently manipulated the confined
wave function to exploit quantum interference and Rabi os-
cillation phenomena by microspectroscopy in individual
InGaAs/GaAs QDs �12�. Using a pulse technique, Pashkin
et al. coherently mixed quantum states and observed quan-
tum coherent oscillation of coupled qubits in the vicinity of
the coresonance �13�. The spectrum of the quantum coherent
oscillations reflected interaction between the qubits. Zrenner
et al. actualized Rabi oscillation by playing an InGaAs quan-
tum dot in a photodiode and demonstrated that coherent op-
tical excitations in the quantum dot can be converted into
deterministic photocurrents �14�. While many-body effects of
the environment fundamentally change many aspects of Rabi
oscillations, the lack of saturation or decoherence is of ut-
most importance. A good knowledge of the decoherence
holds most prominently for many applications such as opto-
electronic devices in quantum information processing where
the operation completely relies on the presence of coherence
�15�. Thereupon, we think over two questions: First, how
does the interplay or competition between optical driving
and dissipation in the TSS influence the decoherence? Sec-

ond, can one sustain large-amplitude coherent oscillation in a
driven spin-boson model?

The dynamics of a driven spin-boson model �16� has at-
tracted the attention of theoreticians for its widespread appli-
cations to various biological, chemical, and physical sys-
tems, e.g., ac-driven superconducting quantum interference
devices, laser-induced isomerization of bistable molecules,
laser-induced localization of electrons in semiconductor
double-well quantum structures, or paraelectric resonance.
The different communities typically rely on different meth-
ods of description. The most direct approach is the portrayal
of the time evolution of the reduced density matrix ��t� in the
generalized master equation �GME� of the TSS. Two popular
approaches are based on either the expansion over system-
bath coupling by the projecting operator method �commonly
known as the Bloch-Redfield formalism� �17�, or the expan-
sion over the tunneling � by �real-time� path-integral meth-
ods such as noninteracting blip approximation �NIBA� �18�.
Hartmann et al. have illuminated the advantages and disad-
vantages of these two approaches �19�. A special case where
the field frequency is comparable to the TSS tunneling �reso-
nance or near-resonance� is prominently important in experi-
ment, but is more difficult to handle analytically. If the
system-bath coupling is weak, the traditional optical Bloch
equations will produce a meaningful result �20,21�. How-
ever, the constant decoherence rate is too simple to make
detailed quantitative predictions �22�. In general, to obtain a
solution for time-dependent spin-boson problems even nu-
merically is a nontrivial task �23,24�.

In this paper we study the quantum dynamics of a driven
spin-boson model, where the frequency of the driven field is
resonance to the tunneling in the TSS. Analytical expressions
for the population difference ��z�t�� and the coherence
��x�t�� are derived through perturbation treatment based on a
unitary transformation. The result shows that with increasing
an amplitude of the driving field, the population difference
converts damped quantum oscillation �single frequency or
double frequency� into large amplitude undamped coherent
oscillation. So one can efficiently control quantum coherent
dynamic by optical pulse to induce and maintain large-
amplitude coherent oscillations. The critical condition from
damped to undamped large-amplitude coherent oscillations is*cxf@sjtu.edu.cn
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obtained. We have also investigated the dependence of the
population difference ��z�t�� and the coherence ��x�t�� on the
initial state.

The paper is organized as follows: In Sec. II we introduce
the model Hamiltonian for driven spin-boson coupling and
solve it in terms of a perturbation treatment based on unitary
transformation. The dependence of the population difference
and the coherence on the initial conditions and the strength
of the driving field are discussed in Sec. III. Finally, the
conclusion is given in Sec. IV.

II. MODEL AND THEORY

We study the dynamics of a driven spin-boson, where the
two state system is linearly coupled to a heat bath and is
driven by a classical microwave field. The system can be
modeled by the Hamiltonian �18,21� as follows:

H�t� = Hs + Hd�t� + Hb + Hi, �1�

with

Hs = − ��x/2, �2�

Hd�t� = ��t��z, �3�

Hb = �
k

�kbk
†bk, �4�

Hi =
1

2�
k

gk�bk
† + bk��z, �5�

where Hs is the Hamiltonian of the TSS, Hd�t� is the external
driven field, Hb is the bath, and Hi is the bath system inter-
action responding for decoherence. Throughout this paper we
set �=1. Here �i �i=x ,y ,z� are Pauli spin matrices, � de-
scribes the tunneling coupling between the two states, and
��t� is the external time-dependent modulating field. bk

† �bk�
and �k are the creation �annihilation� operator and energy of
the phonons with the wave vector k. gk is the electron-
phonon coupling strength. In this work we consider the zero
bias and zero temperature case. The bath is completely de-
fined by the spectral density as follows:

J��� = �
k

gk
2��� − �k� . �6�

We consider the Ohmic bath J���=2��	��c−�� in this
work, where � is the dimensionless coupling constant and
	�x� is the usual step function.

First, we diagonalize the time-independent part of the
Hamiltonian Hs+Hb+Hi. Apply a canonical transformation
H�=exp�s�H exp�−s� with the generator �25� as follows:

S = �
k

gk

2�k

k�bk

† − bk��z. �7�

Then decompose the transformed Hamiltonian H� into three
parts as follows:

H� = H0� + H1� + H2�, �8�

where

H0� = −
1

2
���x + �

k

�kbk
†bk − �

k

gk
2

4�k

k�2 − 
k� , �9�

H1� = −
1

2�
k

gk�1 − 
k��bk
† + bk��x − i

��

2
�y�

k

gk

�k

k�bk

† − bk� ,

�10�

H2� = −
1

2
��x�cosh	�

k

gk

�k

k�bk

† − bk�
 − ��
− i

�

2
�y�sinh	�

k

gk

�k

k�bk

† − bk�
 − ��
k

gk

�k

k�bk

† − bk�� ,

�11�

with

� = exp	− �
k

gk
2

2�k
2
k

2
 , �12�


k =
�k

�k + ��
. �13�

Obviously, H0� can be solved exactly. We denote the ground
state of H0� as �g�= �s1� � 0k��, and the lowest excited states
as �s2� � 0k��, �s1� � 1k��, where �s1� and �s2� are eigenstates
of �x ��x �s1�= �s1�, �x �s2�=−�s2��, while �nk�� means that
there are nk phonons for mode k. The last term of H0�
is a constant and has no effect on the dynamics behavior.
It is easy to check that �g �H2� �g�=0 �because of the
form of ��, �0k� � �s2 �H2� �g�=0, �1k� � �s1 �H2� �g�=0, and
�0k� � �s2 �H2� �s1� � 1k��=0. Moreover, �0k� � �s2 �H1� �g�=0 and
�1k� � �s1 �H1� �g�=0. Thus, we can diagonalize the lowest ex-
cited states of H� as

H� = −
1

2
���g��g� + �

E

E�E��E� . �14�

The diagonalization is through the following transformations
�25�:

�s2��0k�� = �
E

x�E��E� , �15�

�s1��1k�� = �
E

yk�E��E� , �16�

�E� = x�E��s2��0k�� + �
k

yk�E��s1��1k�� , �17�

where

x�E� = �1 + �
k

Vk
2

	E +
1

2
�� − �k
2�

−1/2

, �18�

and
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yk�E� =
Vk

E +
1

2
�� − �k

x�E� , �19�

with Vk=��gk
k /�k. E’s are the diagonalized excitation en-
ergy satisfying the following eigenvalue equation:

E −
1

2
�� − �

k

Vk
2

E +
1

2
�� − �k

= 0. �20�

A series of experiments has successfully realized coherent
control of the qubit by applying resonant microwave excita-
tions �3�. Among them, qubit is driven by a time-dependent
term �mw cos�2�Ft��z, where F is the microwave frequency
and �mw is the microwave amplitude. In view of the experi-
ments, we focus our attention on a monochromatic field of
the form ��t�=� cos�t� and choose the control field excita-
tion to be resonant with the tunneling of TSS. Since �z is
commutative with S, the total transformed Hamiltonian ap-
proximately reads

H� = −
1

2
���g��g� + �

E

E�E��E� − � cos�t��z. �21�

After expanding in the eigenstates �g� and �E�,

H� = −
1

2
���g��g� + �

E

E�E��E� −
�

2�
E

�x*�E��g��E�exp�it�

+ x�E��E��g�exp�− it�� . �22�

In deriving Eq. �22�, we have ignored the counterrotating
terms �26�. This is generally a very good approximation, es-
pecially in the special case when the two states are at reso-
nance or near resonance with the incident field ��. In the
interaction picture,

H0� = −
1

2
���g��g� + �

E

E�E��E� , �23�

VI�t� = −
�

2�
E
�x*�E��g��E�exp�i	−

1

2
�� − E + 
t�

+ x�E��E��g�exp�− i	−
1

2
�� − E + 
t�� . �24�

The wave function in an interaction picture can be written
as ���t��=C1�t� �g�+�ECE�t� �E�, where �C1�t��2 and �CE�t��2
are the probability of finding the particle in states �g� and �E�
at time t, respectively. The equation of motion in the inter-
action picture is

d

dt
���t�� = − iVI�t����t�� . �25�

Suppose the initial state is exp�S� ���0��=C1�0� �s1� � 0k��
+C2�0� �s2� � 0k��=C1�0� �g�+C2�0��Ex�E� �E�. After Laplace
transformation, the solution of Eq. �25� is

C1�P� =

C1�0� +
�

2
C2�0��

E

�x�E��2

E − iP

P + i	−
1

2
�� + 
 − i

�2

4 �
E

�x�E��2

E − iP

, �26�

and

�
E

x*�E�CE�P� =

− i�
E

�x�E��2

E − iP
�C2�0��P + i	−

1

2
�� + 
� + i

�

2
C1�0��

P + i	−
1

2
�� + 
 − i

�2

4 �
E

�x�E��2

E − iP

. �27�

By contour integration in the complex function theory, the summation over E’s can be simplified �see the Appendix� as
follows:

�
E

�x�E��2

E − iP
= −

1

iP −
1

2
�� − �

k

Vk
2

iP +
1

2
�� − �k

. �28�

Substituting it into Eqs. �26� and �27�,
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C1�P� =

C1�0��iP −
1

2
�� − �

k

Vk
2

iP +
1

2
�� − �k� +

�

2
C2�0�

�P + i	−
1

2
�� + 
��iP −

1

2
�� − �

k

Vk
2

iP +
1

2
�� − �k� + i

�2

4

, �29�

�
E

x*�E�CE�P� =

C2�0�	iP +
1

2
�� − 
 −

�

2
C1�0�

�P + i	−
1

2
�� + 
��iP −

1

2
�� − �

k

Vk
2

iP +
1

2
�� − �k� + i

�2

4

. �30�

Then, changing iP+ 1
2�� to �+ i0+ �27�, C1�P� and

�Ex*�E�CE�P� can be rewritten as

C1��� =

iC1�0��� − �� − R��� + i����� − i
�

2
C2�0�

�� − ��� − �� − R��� + i����� −
�2

4

,

�31�

and

�
E

x*�E�CE��� =

iC2�0��� − � − i
�

2
C1�0�

�� − ��� − �� − R��� + i����� −
�2

4

,

�32�

where R��� and ���� denote the real and imaginary parts of
�kVk

2 / ��−�k�,

R��� = �
k

�
Vk

2

� − �k
= ����2 � �

0

�

d��
J����

�� − ������ + ���2

= − 2�
����2

� + ��
� �c

�c + ��

−
�

� + ��
ln� �����c + ���

����c − �� �� , �33�

and

���� = ��
k

Vk
2��� − �k� = �����2 J���

�� + ���2

= 2���
����2

�� + ���2 , 0 � � � �c, �34�

where � stands for the Cauchy principal value. Compared
with Bloch equation and Markovian approximation, decoher-
ence rates ���� in our results are frequency dependent. That
is more general and physical.

We inverse the Laplace transformation,

C1�t� =
exp�i��t/2�

2�
�

−�

+�

C1���exp�− i�t + 0+�d� ,

�35�

�
E

x*���CE�t� =
exp�i��t/2�

2�
�

−�

+�

�
E

x*���CE���

�exp�− i�t + 0+�d� . �36�

The expectation value of �i �i=x ,z� can be expressed as

��i�t�� = ���t���i�t����t�� = ���0��exp�− S�exp�

− iH�t��i exp�iH�t�exp�S����0�� . �37�

After straightforward calculation, the analytical expression
for the population difference ��z�t�� and the coherence
��x�t�� are

��z�t�� = 2 Re	C1
*�t��

E

x*���CE�t�exp�− it�
 �38�

and

��x�t�� = � * 	1 − 2�
E

x*���CE�t��
E�

x*���CE��t�
 .

�39�

III. RESULTS AND DISCUSSION

Here, we are going to discuss the two limiting cases of
considered Hamiltonian: without dissipation and without
driving field. First, without the coupling to bath, our Hamil-
tonian Eq. �1� is the same as that of the driving two-level
model in quantum optics �26�, if we substitute �x in Eq. �1�
by �z and �z by �x. As is well known, the model dynamics in
quantum optics depends on the initial condition. In the nota-
tion of Eq. �1� the dynamics without the coupling to bath can
be described as follows: If the initial preparation is ��x�t
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=0��=1 and the driven field is turned on, the population
difference ��z�t�� displays quantum beat that results from the
interference of fast oscillation with field frequency  and
slow oscillations with Rabi frequency �. The coherence
��x�t�� oscillates with the Rabi frequency. But if the system
is initially in the state ��z�t=0��=1, without the bath ��z�t��
oscillates as cos t but ��x�t��=0. Second, it is also known
that ��z�t�� damply oscillates if the coupling system Eq. �1�
lacks the driven field �25�. Our purpose in this paper is to
study how the dissipative environment and driven field de-
termine collectively the quantum dynamics of TSS.

We discuss mainly the resonant case =�. �c is taken as
the energy unit and time is in units of �c

−1. The coupling to
the bath is taken as �=0.01 in all calculations except Fig.
1�d�, �=0.3. In Fig. 1, we plot the population difference
��z�t��. The initial state is ��z�t=0��=1 with bath in thermal
equilibrium. The curves shown in panels �a�, �b�, and �c�
correspond to three different amplitudes of external field �
=0, 0.01, 0.1. Figure 1�d� presents the population difference
��z�t�� with �=0.4 and �=0.3. The Fourier spectrums of
��z�t�� are presented in the right four panels, respectively. As
seen from Fig. 1�a�, without driving, the population differ-
ence exhibits damped oscillation. The oscillation frequency
�0 and the damping rate � well agree with previous results
�25�. Figure 1�b� shows the case of weak driving where
��z�t�� decays with beat pattern of two frequencies at about
−� and . Further increasing driving strength, ��z�t��
damply oscillates with a master frequency  in Fig. 1�c�.
These three cases show that in the weak driving case, the
system always damply oscillates and this genuine quantum
coherence oscillation is weakened by friction from the dissi-
pative bath. In Fig. 1�d�, for sufficiently strong amplitude �
�2, population difference damply oscillates with a short
time at the beginning, then displays undamped large-

amplitude coherent oscillation with the frequency of the
driving field . In order to see the process clearly, we choose
strong coupling �=0.3. In this case, the driving field over-
comes dissipation and dominates the dynamics of the system.
Comparing Figs. 1�a�–1�d�, we can see that the population
difference ��z�t�� displays a quantum beat only for the weak

FIG. 2. The coherence ��x�t�� as a function of t for the initial
condition ��z�t=0��=1 with various values of the driving field am-
plitude, �=0 �solid line�, 0.01 �dashed line�, 0.1 �dotted line�, and
0.4 �dot-dashed line�. The coupling is �=0.01 and the other param-
eters are the same as in Fig. 1.

FIG. 1. The population difference ��z�t�� as a function of t for the initial condition ��z�t=0��=1 with various values of the driving field
amplitude �left panels�, �=0 �a�, 0.01 �b�, 0.1 �c�, and 0.4 �d�. Also shown in the right panels are the corresponding frequency spectra with
the same parameters as in left ones. The coupling is �=0.01 except �d� �=0.3. The driving field frequency is in resonance with TSS 
=�. Here and in the following figures �, �, and frequency  are expressed in units of �c and time in units of �c

−1.
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driving case: −�� �±� � �+�, as where � is the damp-
ing rate.

In Fig. 2, the coherence ��x�t�� is plotted with �=0.01
and the other parameters are the same as in Fig. 1. Without
driving, the coherence ��x�t�� asymptotically goes to 1, im-
plying that the system decays to the ground state for a long
time �28�. For weak driving amplitude �=0.01 and 0.1, it is
visible that ��x�t�� tends to 1 with the oscillation of Rabi
frequency �. While for large driven field strength �=0.4, the
coherence ��x�t�� oscillates around zero with a small ampli-
tude. The driving makes the occupation probability on the
two states equal, that is to say, the electron tunnels frequently
between the two states and the strong driving field sup-
presses the effect of the dissipative environment.

Any superposition ���=� �s1�+� �s2� can be prepared in
experiment, through manipulation of the quantum state by
applying microwave pulses ��t� to the gate �29�. Figure 3
shows the population difference ��z�t�� for the same param-
eters as in Fig. 2, but with different initial condition ��x�t
=0��=1. Without driving, ��z�t��=0 in Fig. 3�a�. For weak

driving, despite the dissipation, Rabi oscillations can be in-
duced by applying microwave field in resonance with the
TSS. The oscillation decays nonexponentially and displays a
clear beating. From the frequency spectrum �right panels�,
one can see the two peaks at around −� and +�, that is
to say, ��z�t�� can be fitted by sin �t*sin t. It is the well-
known quantum beat in quantum optics, but here the beat is
dissipative. In Fig. 3�d�, well-behaved coherent oscillation
can be observed when the driving field strength is adequately
strong �=0.4. The frequency of the oscillation is +� and
.

With the same parameters and the initial condition as in
Fig. 3, the coherence ��x�t�� is plotted in Fig. 4. The coher-
ence ��x�t�� displays damped oscillation with Rabi frequency
and finally stabilizes in the ground state in Figs. 4�a� and
4�b�. The damping can be treated as a leakage of energy �30�
and the leakage may be suppressed by enhancement of the
driving field. For strong driving, the long time limit shifts to
a different value because of the external field.

It has been observed in experiment that the population
difference ��z�t�� may display a damping quantum beat in

FIG. 3. The population differ-
ence ��z�t�� as a function of t for
the initial condition ��x�t=0��=1
with various values of the driving
field amplitude �left panels�,
�=0�a�, 0.01�b�, 0.1�c�, and
0.4�d�. Also shown in the right
panels are the corresponding fre-
quency spectra with the same pa-
rameters as in the left ones. The
coupling is �=0.01. The driving
field frequency is in resonance
with TSS =�.

FIG. 4. The coherence ��x�t�� as a function of
t for the initial condition ��x�t=0��=1 with vari-
ous values of the driving field amplitude. �a� �
=0 �solid line�, 0.01 �dashed line�, and 0.1 �dot-
ted line�, �b� 0.3, �c� 0.4. The other parameters
are the same as in Fig. 3.
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the superconducting qubit �3�. Comparing two cases of quan-
tum beat in Figs. 1 and 3, our calculations show that the
initial condition of TSS determines the features of the quan-
tum beat. First, the condition for the beat to appear in the
initial preparation of Fig. 1 is more rigorous than in that of
Fig. 3. In the initial condition of Fig. 1 the quantum beat only
emerges in the weak driving case and the driving frequency
must be in the range of −�� �±� � �+�, where � is
the damping rate. While in the initial condition of Fig. 3, the
quantum beat can always exist, even the driving amplitude is
strong enough leading to the undamped oscillation. Next, the
frequencies of the beat pattern are  and −� �and/or 
+�� in Fig. 1, while in Fig. 3 they are −� and +�. The
difference of the beating frequencies can be understood as
follows. In the initial condition ��z�t=0��=1, Hd�t�=��t��z is
the maximum and the driven dominates the oscillation of
TSS at the beginning, then the environment and driven field
interplay. It is natural that the frequency of driving, , is of
priority and the quantum beat �double frequencies� can
emerge only in the weak driving case. But in the initial con-
dition ��x�t=0��=1, Hd�t� is zero at first and the effects of
driving and the environment are equivalent, so the frequen-
cies of the oscillation are −� and +�.

In what follows, we discuss the possibility and the critical
condition to induce and maintain the long time coherent os-
cillation by applying a resonant control field. From Eqs. �35�,
�36�, and the theory of complex function, it is known that the
behavior of the population difference ��z�t�� and the coher-
ence ��x�t�� can be learned from a study of the poles of
C1��� and �Ex*���CE��� �Eqs. �31� and �32��. C1��� and
�Ex*���CE��� have the same poles, denoted as D���= ��
−���−��−R���+ i�����−�2 /4, since they have the same
denominator. Figure 5 shows the real part of the denomina-
tor, Re D���= ��−���−��−R����−�2 /4, which is an
even function of the driving field �. When �=0, the roots of
Re D���=0 are at �1=0 and �2=�0, where �0 is the root of
equation �−��−R���=0 �25� and �−�0 is the Lamb shift
due to the coupling to bath. Applying driving field to TSS,
the two roots of Re D���=0 are shifted. With increasing �,

�1 increases first and then goes down, and becomes negative
�1�0 for larger ��2. �2 increases with increasing �. Be-
sides, the imaginary part of the denominator, Im D���
=������−�, depends on the frequency � and plays the
role of damping rate. We note that �����0 for 0����c

and ����=0 otherwise. Thus, there are two different cases
according to whether �1 and �2 are within the range 0
��1, �2��c or not.

�1� If they are in the range of 0��1, �2��c, then
���1��0 and ���2��0 and the poles of C1��� and
�Ex*���CE��� are on the complex plane away from the real
axis. In this case, the dissipation dominates the long time
behavior of the system and, after adequate time, the coherent
oscillation is damped out.

�2� If �1 or �2 is outside of the 0��1, �2��c, i.e., �1 is
negative or �2��c, then the corresponding damping rate
vanishes. ��z�t�� cannot decay to zero and may display large-
amplitude coherent oscillation. Approximately, we estimate
that when ��2, ��z�t�� can maintain undamped coherence
oscillation.

× ×● ● ●

● iP

1En−
En

1E

1C

2C

3C

4C

R

FIG. 6. The contour and the poles in the complex plane.

FIG. 5. Re D��� vs � for the different driving
field amplitude �=0 �solid line�, 0.1 �dashed
line�, 0.3 �dotted line�, and 0.5 �dot-dashed line�.
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IV. CONCLUSION

In this paper, we have investigated the quantum driving
dynamics of a spin-boson model by a perturbation treatment
based on a unitary transformation. The population difference
and the coherence are obtained explicitly and analytically.
Our approach is not restricted to a special form of spectral
density and can be used to study the quantum dynamics of
general initial preparation. Additionally, a simple expression
for the poles, ��−���−��−R���+ i�����−�2 /4, allows
us to analyze the critical condition from a damped quantum
oscillation to an undamped one. We find that, for weak driv-
ing, the population difference ��z�t�� displays damping quan-
tum beat, while for strong field ��2, ��z�t�� can preserve
large-amplitude coherent oscillation. We believe these results
may be helpful for quantum information processing and

quantum computation where a sufficiently long coherent
time is necessary for both the storage and manipulation of
the quantum states that are unavoidably exposed to their sur-
rounding environment.
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APPENDIX

In this Appendix, we show details of how to sum over a
series of diagonalized excitation energy E1 ,E2 , . . . ,En−1 ,En,.
First, we construct a contour integral in the complex plane
�27� as follows:

�
E

�x�E��2

E − iP
=

1

2�i
�

C1+C2

dE

�E −
1

2
�� − �

k

Vk
2

E +
1

2
�� − �k��E − iP�

. �A1�

The contour C1+C2 is shown in Fig. 6. The denominator

�E− 1
2��−�k

Vk
2

E+1
2

��−�k ��E− iP� has real poles

E1 ,E2 , . . . ,En−1 ,En, on real axis in the region −�� /2�E
��� /2+�c. Then we cut the contour at E= ±� and separate

it into two pieces C1+C3 and C2+C4. Each piece has a part
which runs along the real axis, either above or below, and
connects to the large semicircle of radius R. When R→�,
the contour integrals on the two semicircles are zero. So the
contour integral in Eq. �A1� becomes

�
E

�x�E��2

E − iP
=

1

2�i
�

C1+C2

dE

�E −
1

2
�� − �

k

Vk
2

E +
1

2
�� − �k��E − iP�

=
1

2�i
�

C1+C3

dE

�E −
1

2
�� − �

k

Vk
2

E +
1

2
�� − �k��E − iP�

+
1

2�i
�

C2+C4

dE

�E −
1

2
�� − �

k

Vk
2

E +
1

2
�� − �k��E − iP�

.

�A2�

The contours C1+C3 and C2+C4 contain the pole at E= iP and the residue of it is

�
E

�x�E��2

E − iP
= −

1

iP −
1

2
�� − �

k

Vk
2

iP +
1

2
�� − �k

. �A3�
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