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Abstract

The effects of DM interaction on the density-of-states, the dimerization and the phase diagram in the antiferromagnetic Heisenberg

chain coupled with quantum phonons have been studied by a nonadiabatic analytical approach. The results show that the effect of the

DM interaction is to increase the staggered antisymmetric spin exchange interaction order but to decrease the spin dimerization and their

competitions result in the lattice dimerization ordering parameter to increase for large staggered DM interaction parameter b and

decrease for small b. A crossover of b exists in which the dimerization ordering parameter changes non-monotonously. As the DM

interaction parameter D increases, depending on the appropriate values of spin-phonon coupling, phonon frequency and b, the system

undergoes phase transition from spin gapless state to gapped state or reversely and can even reenter between the two states. The relation

between the phonon-staggered ordering parameter, the spin-dimer order parameter and the staggered DM interaction order parameter

gives clearly their contributing weights to the lattice dimerization.
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In recent years, the Dzyaloshinsky–Moriya (DM) inter-
action [1] has gained renewed interest because of the
evidence of its existences in a variety of quasi-one-
dimensional magnets [2–4] and its applications to describe
the unusual anisotropy of the magnetic susceptibility
observed in cuprate superconductors [5] and to interpret
an anomalous magnetic behavior in BaCu2M2O7 ðM ¼
Si;GeÞ [6,7], La2CuO4 [8], Yb4As3 [14] and YVO3–SrVO3

systems [9]. The experiments such as high-field neutron-
scattering measurements on Cu benzoate [10] and electron
paramagnetic resonance investigations in CuGeO3 [11–13]
manifest that in these materials the DM interaction plays
an important role [14–16] and a study of one-dimensional
DM Hamiltonian seems to be of great importance [17]. The
antisymmetric character of DM interaction is expressed by
two principal cases, the uniform [18,19] and the staggered
front matter r 2006 Elsevier B.V. All rights reserved.
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DM interactions [17,19,20], and has been studied by many
previous authors. A numerical calculations of the ground-
state energy of the spin-Peierls XX model and Heisenberg
chain with DM interaction by Derzhko et al. [21] found
that uniform DM interaction may act against the
dimerization but staggered DM interaction may act in
favor of the dimerization. However, whether the staggered
DM interaction always enhances the dimerization or the
uniform DM interaction always acts against the dimeriza-
tion has not been clearly answered. Up to now, all of the
theoretical studies on DM interaction in spin-chain systems
have used the static model and treated the problem in
adiabatic limit. By considering the static model, several
attempts have been performed to treat the spin-phonon
coupling [21,22]. The validity of this static model is based
on the assumption that the frequencies of the phonons
associated with the dimerization are much smaller than the
dimerization gap and the exchange integral. However, this
is questionable, and the amplitude of the dimerization is
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substantially underestimated when compared with esti-
mates from structural data in the spin-Peierls phase [23].
The effect of quantum fluctuations in quasi-one-dimen-
sional systems is significant, resulting in many interesting
phenomena and must be taken into account to satisfacto-
rily describe some physical properties of quasi-one-dimen-
sional spin-Peierls system [24,25]. An interesting and still
controversial problem is how the effect of DM interaction
on the dimerized ground state is modified when quantum
lattice fluctuations are taken into account. However, with
the coupling of spin systems to quantum phonons, this
problem is rather difficult to handle analytically, which has
brought much uncertainty in the interpretation of experi-
mental data and has limited our understanding of many
interesting quantum phenomena of low-dimensional mag-
netic materials. An analytical and nonadiabatic study of
the DM interaction in spin-Peierls system will make it
possible to have an insight into the intrinsical properties of
the spin chain materials. In a recent work [26], the effect of
DM interaction on the spin-Peierls dimerization was
studied by considering the XY spin chain and some
interesting results were obtained. In this paper, we focus
on the properties of the density-of-states (DOS), the phase
diagram and the dimerization order parameter of the
antiferromagnetic Heisenberg model with spin-phonon
coupling by developing a nonadiabatic analytical approach
with the view of understanding the effects of the DM
interaction in the system.

We start from the antiferromagnetic Heisenberg model
with DM interaction and spin-phonon coupling [17,21,27]

H ¼
X

l

JlSl � Slþ1 þ
X

l

Dl � ðSl � Slþ1Þ þHph, (1)

where the spin exchange energy Jl ¼ J½1þ lðul � ulþ1Þ�;
the module of the DM vector Dl ¼ D½1þ lbðul � ulþ1Þ�;
Sl � Slþ1 ¼

1
2
ðSþl S�lþ1 þ S�l Sþlþ1Þ þ Sz

l Sz
lþ1; and the phonon

energy Hph ¼
P

lðð1=2MÞp2
l þ

1
2
Ku2

l Þ. The notations in the

model are the same as usual [17]. Though the directions of
Dl are not changed by the dimerization [13], the
dependence of the isotropic exchange interaction and the
DM interaction on the intersite distance may be different
[1], therefore the staggered DM interaction parameter b is
introduced to describe the effect of different dependence of
DM interaction on the intersite distance. If b ¼ 0 the DM
interaction does not depend on the lattice distortion, i.e.
DM interaction is uniform, whereas for b ¼ 1 the
dependence of DM interaction on the lattice distortion
(the staggered DM interaction) is the same as that for the
isotropic exchange interaction. Although it was estimated
that the DM vector had two components [17] from the
specific heat, neutron scattering, and ESR measurement
data of copper benzoate, the numerical study by density
matrix renormalization group found that a DM vector with
only one component gave the best fit to the experimental
observations [28]. In view of this as well as for simplifica-
tion, we choose the vector Dl to be directed along the
z-axis, Dl ¼ Dlk, After the expansion of the lattice modes
ul by phonon operators bl ; and the Jordan–Wigner
transformation with the definition of a bond-dependent

mean field g ¼ hclc
y

lþ1i [29] (which implies a nearest-

neighbor ‘‘covalent bonding’’ of the Jordan–Wigner
fermions, analogous to the chemical bonding of the
electrons), the Hamiltonian (1) is mapped into spinless
Wigner fermions and in momentum space it becomes

H ¼ JNg2 þ
X

q

op byqbq þ
1

2

� �
þ
X

k

�kc
y

kck

þ
1ffiffiffiffiffi
N
p

X
k;q

gðk; k þ qÞðby�q þ bqÞc
y

kþqck, ð2Þ

where N is the total number of lattice sites, the bare band
function of the fermions �k ¼ Jð1þ 2gÞ cos k �D sin k, the

phonon frequency op ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
, and the coupling function

gðk; k þ qÞ ¼ ilð2MopÞ
�1=2
fJð1þ 2gÞ½sin k � sinðk þ qÞ�

þDb½cos k � cosðk þ qÞ�g. ð3Þ

Since �k can be rewritten as

�k ¼ JZ cosðk þ yÞ, (4)

with

y ¼ arctan½D=Jð1þ 2gÞ�, (5)

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2gÞ2 þ ðD=JÞ2

q
, (6)

the Fermi level is given by the condition �kF
¼ 0; therefore

the Fermi wave vector kF ¼ �p=2� y. In momentum
space, compared with the spin-Peierls system without the
DM interaction, the Fermi surface kF shifts by y as D

varies, but the size of the Fermi sea is unchanging.
Accordingly, the filling situation of fermions is also
unchanging.
To take into account the spin-phonon coupling and the

static phonon-staggered ordering due to the dimerization,
two unitary transformations are applied to H [30], ~H ¼
expðRÞ expðSÞH expð�SÞ expð�RÞ; with the generators

S ¼
1ffiffiffiffiffi
N
p

X
q;k

gðk; k þ qÞ

op
ðby�q � bqÞdðk þ q; kÞcykþqck, (7)

R ¼
X

l

ð�1Þlu0

ffiffiffiffiffiffiffiffiffiffiffi
Mop

2

r
ðbl � b

y

l Þ. (8)

Here the introduced dðk0; kÞ is a function of the energies of
the incoming and outgoing fermions in the fermion-
phonon scattering process and u0 is the dimerized lattice
displacement ordering parameter. By making the matrix
element of the first-order terms in the transformed
Hamiltonian between ground state and excited states
vanishing, dðk0; kÞ can be determined as

dðk þ q; kÞ ¼ 1þ
j�kþq � �kj

op

� ��1
. (9)
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This choice of dðk0; kÞ leads the first-order terms of the
transformed Hamiltonian to be related only to the higher-
lying excited states and should be irrelevant under
renormalization. u0 will be determined below by variational
principle.

After averaging the transformed Hamiltonian over the
phonon vacuum state we get an effective Hamiltonian for
the fermions

Heff ¼ JNg2 þ
1

2
KNu2

0 þ
X

k

E0ðkÞc
y

kck þ
X

k

iD0ðkÞc
y

k�pck

�
1

N

X
q;k;k0

gðk; k þ qÞgðk0; k0 � qÞ

op
dðk þ q; kÞ

�½2� dðk0 � q; k0Þ�cykþqckc
y

k0�q
ck0 , ð10Þ

where

E0ðkÞ ¼ �k �
1

N

X
k0

gðk0; kÞgðk; k0Þ

o2
p

dðk0; kÞdðk; k0Þð�k � �k0 Þ,

(11)

D0ðkÞ ¼ 2lu0½Jð1þ 2gÞ sin k þDb cos k�½1� dðk � p; kÞ�.

(12)

In the adiabatic limit, where op ¼ 0, Heff goes back to the
adiabatic mean-field Hamiltonian,

Heff ðop ¼ 0Þ ¼ JNg2 þ
1

2
KNu2

0 þ
X

k

�kc
y

kck

þ
X

k

i2lu0½Jð1þ 2gÞ sin k

þDb cos k�c
y

k�pck. ð13Þ

It can be diagonalized exactly. Note that in Eq. (10), since
d�op; g�

ffiffiffiffiffiffiffiffiffiffiffiffi
op=K

p
, the four-fermion term induced by the

nonadiabatic effect due to finite phonon frequency goes to
zero when op! 0 [see Eq. (13)], therefore, in this case, this
term can be treated as a perturbation and the others, being
able to be diagonalized exactly, as unperturbed Hamilto-
nian. By means of the Green’s function method to
implement the perturbation treatment on the four-fermion
term in Eq. (10), we get the renormalized band function
and gap function [30]

EðkÞ ¼ E0ðkÞ �
1

N

X
k0

gðk; k0Þgðk0; kÞ

op
dðk0; kÞ½2� dðk; k0Þ�

�
E0ðk

0
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
0ðk
0
Þ þ D2

0ðk
0
Þ

q , ð14Þ

DðkÞ ¼ 2lu0½ð1þ 2gÞJ sin k þDb cos k�½c� ddðk � p; kÞ�,

(15)

where

c ¼ 1þ
a

NJ

X
k40

½Jð1þ 2gÞ sin k þDb cos k�2

�½1� dðk � p; kÞ�dðk � p; kÞ½E2
0ðkÞ þ D2

0ðkÞ�
�1=2, ð16Þ
d ¼ 1�
a

NJ

X
k40

½Jð1þ 2gÞ sin k þDb cos k�2

�½1� dðk � p; kÞ�2 E2
0ðkÞ þ D2

0ðkÞ
� ��1=2

, ð17Þ

and a ¼ 2l2J=K is the spin-phonon coupling constant. The
fermionic spectrum in the gapped state is given by
W ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðkÞ þ D2ðkÞ

p
.

By variational principle to minimize the ground state
energy Eg ¼ hgjHeff jgi, the dimerized lattice displacement
ordering parameter u0 is determined by

1 ¼
2a
NJ

X
k40

½Jð1þ 2gÞ sin k þDb cos k�2

�½1� dðk � p; kÞ�
c� ddðk � p; kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2ðkÞ þ D2ðkÞ
p . ð18Þ

The nearest-neighbor covalent-bonding g ¼ ð1=NÞ
P

k40

cos kðEðkÞ=W ðkÞÞ. When l ¼ 0, g ¼ ðpZ� 2Þ�1; and in this
case, if D ¼ 0 also, the Hamiltonian (1) reduces to Heisenberg
model and g becomes the same as Wang’s g ¼ 1=p [29].
For investigation on the nonadiabatic effect of DM

interaction on the dimerization, we calculate the phonon-
staggered ordering parameter

mp ¼
1

N

X
l

ð�1Þlhuli

¼
1

N

X
k40

2l
K
½Jð1þ 2gÞ sin k þDb cos k�

DðkÞ
W ðkÞ

, ð19Þ

and the spin-dimer order parameter

ms ¼
1

N

X
l

ð�1ÞlhSl � Slþ1i ¼
1

N

X
k40

ð1þ 2gÞ sin k
DðkÞ
W ðkÞ

.

(20)

The effects of the staggered and the uniform DM
interactions on the dimerization can be clearly identified
by defining the staggered and the uniform DM interaction
order parameters,

Dstag ¼
1

N

X
l

ð�1Þlhk � ðSl � Slþ1Þi ¼
1

N

X
k40

cos k
DðkÞ
W ðkÞ

,

(21)

Dunif ¼
1

N

X
l

hk � ðSl � Slþ1Þi ¼
1

N

X
k40

sin k
EðkÞ

W ðkÞ
. (22)

Thus, we get the relation between the phonon-staggered
ordering parameter, the spin-dimer order parameter and
the staggered DM interaction order parameter,

lmp ¼ a ms þ
bD

J
Dstag

� �
, (23)

which gives clearly the contributing weights of ms and Dstag

to the lattice dimerization. If there is no spin-phonon
coupling l ¼ 0;mp ¼ ms ¼ Dstag ¼ 0 and

Dunif ¼ �
sin y
p
¼ �

D

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Jðþ2gÞ�2 þD2

p . (24)
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When 0obp1; the DM interaction includes both the
uniform and the staggered components. Fig. 1(A)–(C)
show Dstag; ms and lmp; respectively, as functions of D=J in
the cases of a ¼ 1:0 and op=J ¼ 0:01 with different
staggered DM interaction parameters b from zero to 1.
When D ¼ 0; i.e., there exists no DM interaction, the spin-
dimer order parameter takes its maximum value and the
staggered DM interaction order parameter the minimum
value. As b or D increases, Dstag increases but ms decreases,
which indicates the effect of the DM interaction is to
decrease the spin dimerization. The competition result
between Dstag and ms determines the lattice dimerization
ordering parameters mp to be increasing for large b and
decreasing for small b. Obviously, there exists a finite
threshold value of b and when b increases to cross this
value, the effect of the DM interaction on the lattice
dimerization changes from suppression to promotion. The
threshold value bc can be obtained by letting the variation
qmp=qD ¼ 0 ðDa0Þ; and in the nonadiabatic case, bc is
determined by a set of values of D; l and op. If bc was
simply a constant as previous works predicted [21], lmp
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Fig. 1. (A) The Dstag, (B) ms and (C) lmp; respectively, as functions of D=
interaction parameters b from zero to 1. (D) The change of lmp with D=J for
would not change with D when b ¼ bc. However, in view of
the determination of mp by D, b, l and op, one might
wonder why the DM interaction should have no effect on
dimerization when b ¼ bc. Our calculation indicates that bc
is not simply a constant but a crossover. The change of lmp

with D=J in the region of this crossover is presented in
Fig. 1(D) for b ¼ 0:54, 0:56, 0:58 and 0:60.
The DOS of the Wigner fermions is

rðoÞ ¼
1

N

X
k

d½o�W ðkÞ� ¼
1

2p
dW ðkÞ

dk

����
k¼f ðoÞ

 !�1
, (25)

where, k ¼ f ðoÞ is the inverse function of the excitation
energy o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðkÞ þ D2ðkÞ

p
. Fig. 2 shows the calculated

DOS for a ¼ 0:4 and op=J ¼ 0:01 with different b and D.
One can see that a nonzero DOS starts from the spin
dimerization gap edge and there exists a peak above the
gap edge with a significant tail between it and the true spin
gap edge. As D=J increases, the peak height of DOS
decreases and the peak position opeak shifts to lower
excitation energy for smaller b but contrary to that for
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b ¼ 0:54, 0:56, 0:58 and 0:60.
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larger b. A full view of opeak as functions of D=J for wider
range of b is plotted in Fig. 3(A). Fig. 3(B) illustrates the
opeak as functions of D=J for b in the crossover. As shown
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Fig. 2. The DOS for a ¼ 0:4 and op=J ¼ 0:01 with different b and D.
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Fig. 3. (A) The opeak as functions of D=J in the cases of a ¼ 0:4 and op=J ¼ 0:
b ¼ 0:7, 0:69 and 0:68. (C) opeak as functions of D=J with op=J ¼ 0:01 for di
in the figure, for certain a and op=J, the crossover has its
bottom boundary bbot and top one btop. When b is smaller
(larger) than bbot (btop), opeak=J decreases (increases)
monotonously as D=J increases, while when bbotobo
btop, as D=J increases opeak=J decreases at first until it
reaches its minimum at a definite value of D=J, and
thereafter increases. For appropriate fixed value of a and
small b, opeak=J decreases as D=J increases and goes to
zero at a critical value ðD=JÞc which indicates the spin
gapped state is destroyed. If b is large, as D=J increases
opeak=J keeps zero at first and at a critical value of D=J

changes from zero to finite and then increases, in other
words, the system undergoes a phase transition from spin
gapless state to gapped state. These processes are
illustrated in Fig. 3(C).
Substituting u0 ¼ 0 into Eq. (18), we get the self-

consistent equation of phase-transition points

1 ¼
2a
NJ

X
k40

½Jð1þ 2gÞ sin k þDb cos k�2½1� dðk � p; kÞ�

�
c� ddðk � p; kÞ
jEðkÞj

. ð26Þ
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fferent appropriate fixed values of a and b.
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Fig. 4. The phase diagram in the a� D=J plane for op=J ¼ 0:01 with b varying in whole range. Inset: a zoom in view of the phase diagram in the crossover

region.
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Fig. 4 shows the phase diagram in the a� D=J plane for
op=J ¼ 0:01 with b varying in whole range. The increase in
D=J leads the phase boundary to move to larger spin-
phonon coupling when b is small, but to smaller one when
b is large. The change of b strongly influences the phase
boundary. The inset is a zoom in view of the phase diagram
in the crossover region. It indicates that for appropriate
fixed values of a and b the system can reenter between the
spin gapless and the spin gapped states as D increases.

Within the adiabatic approximation, the calculated DOS
of the dimerized spin-phonon systems has an inverse-
square-root edge singularity and there is no state inside the
gap edge, which is discrepant to experiments. In observa-
tions, the singularity is absent, and there is a significant tail
below the maximum of DOS. In our theory, by considering
the nonadiabatic effect due to the finite phonon frequency,
the Fermi surface is smeared and the singularity related to
the infrared divergence of the Fermi edge effect is
eliminated, which is consistent with the measurement of
optical absorption spectrum in quasi-one-dimensional
spin-Peierls systems. By using the Green’s function method
to implement the perturbation treatment, our results are
more suitable in the small op regime, which is theoretically
and experimentally significant since, from the view point of
experiment, for quite a lot of realistic cases the energy of
quantum phonon op is small. In the perturbation study, we
use the spin-phonon coupling l as the perturbation order
parameter and the coefficient of the four-fermion term in
the effective Hamiltonian (10) is proportional to
2l2Jop=K, therefore, 2l2Jop=K ¼ aop should be small
enough to ensure that the perturbation treatment is
appropriate at nonadiabatic case.
In conclusion, the effects of DM interaction in the
antiferromagnetic Heisenberg model with spin-phonon
coupling have been studied through a nonadiabatic
analytical approach and the phonon-staggered ordering
parameter, the DOS, and the phase diagram of the system
are derived. The results show that the effect of the DM
interaction is to increase the staggered antisymmetric spin
exchange interaction but to decrease the spin dimerization
and their competitions result in the lattice dimerization
ordering parameter mp to be increase for large b and
decrease for small b. A crossover of b exists and the system
can reenter between the spin gapless and the spin gapped
states.
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