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Abstract – We investigate the dynamical information exchange between a two-state system
and its environment which is measured by the von Neumann entropy. It is found that in the
underdamping regime, the entropy dynamics exhibits an extremely non-Markovian oscillation-
hump feature, in which oscillations manifest quantum coherence and a hump of envelop
demonstrates temporal memory of bath. It indicates that the process of entropy exchange is
bidirectional. When the coupling strength increases up to a certain threshold, the hump along
with ripple disappears, which is indicative of the coherent-incoherent dynamical crossover. The
long-time limit of entropy evolution reaches the ground-state value which agrees with that of the
numerical renormalization group.
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The non-equilibrium evolution of open quantum
systems is one of the most challenging and intriguing
problems of contemporary research in both theoretical
and experimental physics. The transient dynamics can
be harnessed and controlled desirably in quantum infor-
mation processing. The first step to manipulate it is to
understand how it evolves in a short-time interval. It
is known that the correlations of an open system with
its surrounding environment lead to finite lifetime of
quantum superpositions, which give rise to the evolution
from pure states into mixed ones. It is often stated that
decoherence causes the system to become entangled with
its environment, and the entanglement between them
can be measured quantitatively by the von Neumann
entropy [1]. The main questions which now arise are:
How does the entropy or quantum information flow from
system to environment? After the state of the system is
initialized as a pure state without entanglement, how does
the entropy evolve to its long-time limit (monotonously or
not)? Is the process of information transfer between bath
and system, unidirectional or bidirectional? In this paper,
as far as we know, it is the first time that one shows
the time evolution of entropy for an open system which
exhibits extremely non-Markovian characters and points
out that the process of entropy exchange is bidirectional
in the underdamping region.

(a)E-mail: zglv@sjtu.edu.cn

The dissipative two-state system (TSS), which is also
called the spin-boson model, as a simple paradigm of
open system, is a generic model which can be widely
used to describe a large number of physical and chemical
processes, such as the defect-tunneling and electron
transfer, and applied to clarify very interesting quantum
phenomena, such as decoherence and dephasing [2,3].
The open system inevitably encounters decoherence
which makes a quantum superposition state decay
into a classical, statistical mixture of states. Thus,
derivation of the reduced density matrix is a central
goal in order to describe its evolution. Based on the
weak-coupling assumption, a Markovian master equation
could give its dynamics. However, strong interactions
with low-temperature reservoirs give rise to large system-
environment correlations which generally result in a
failure of the Markovian approximation. In this case,
the system dynamics possesses long memory times and
exhibits a pronounced non-Markovian behavior [4]. Thus,
it is significant to show the temporary evolution of
the system by a non-Markovian approach, especially,
in the case of the strong coupling to its bath. The
non-Markovian approach can investigate not only a more
complicated situation where Markovian approximation is
unreachable but also different spectral densities between
the system and the environment.
The entanglement entropy has been considered in many

works. They mainly focus on the static or ground-state
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properties and find some important results [5–7]. Costi
and McKenzie used a numerical renormalization group
(NRG) treatment to study the entropy of the ground state
as a function of coupling [5]. Recently, Hur and coworkers
applied the NRG to study the quantum phase transition
and found that there is a cusp in the entanglement
entropy accompanying quantum phase transition [6].
As explicitly pointed out by Costi and McKenzie, it is
fascinating to show how entropy varies with time after
the qubit is initially prepared in a certain state without
entanglement [5]. In order to calculate the dynamics of
entanglement entropy, we present an analytical approach
based on a unitary transformation method without
the Markovian approximation. It works well in the
parameter regime 0<α< 1 and 0<∆<ωc, and can
reproduce well-known non-perturbation results obtained
by various methods, such as the coherence-incoherence
transition, which have been studied in our previous
work [8]. The approach does not invoke the rotating-wave
approximation so as to take into account the effects of
counter-rotating terms on transient dynamics. Since the
quantum manipulation can be effectively made in the
coherent region, we would give the evolution of entropy for
this regime at T = 0. We find the non-Markovian entropy
evolution with a pronounced small-oscillations feature
in the weak coupling, which demonstrates quantum
coherence. As the coupling increases, a hump along with
ripple clearly emerges in the short time characterizing the
temporal memory of the bath, eventually the dissipative
effects quench some oscillations and the hump near the
coherence-incoherence transition.
The spin-boson model reads [2,3]

H =−∆
2
σx+

∑
k

ωkb
†
kbk +

1

2

∑
k

gk(b
†
k + bk)σz. (1)

Standard notations are used [3], ∆ is the bare tunneling
matrix and gk the coupling constant. The effect of environ-
ment is determined by its spectral density:∑
k g
2
kδ(ω−ωk) = 2αωθ(ωc−ω), where α is the dimen-

sionless coupling constant, ωc is a cutoff frequency and
θ(x) is the usual step function. (In the work the spectrum
is of Ohmic type, and we set �= kB = 1.) Although the
model seems quite simple, it is in general not exactly
solvable and a large variety of approximate analytical and
numerical methods have been proposed and implemented
to study its ground state and dynamics [5–15].

Unitary transformation. – A unitary transforma-
tion, which is defined as H ′ = exp(S)Hexp(−S), is applied
to H in order to take into account the correlation between
the spin and bosons [8,9]. The form of the generator is
proposed,

S =
∑
k

gk

2ωk
ξk(b

†
k − bk)σz, (2)

where a k-dependent function ξk is introduced [8]. The
transformation can be performed to the end and the result

is H ′ =H ′0+H ′1+H ′2,

H ′0 =−
∆r
2
σx+

∑
k

ωkb
†
kbk −

∑
k

g2k
4ωk
ξk(2− ξk), (3)

H ′1 =
1

2

∑
k

gk(1− ξk)(b†k + bk)σz −
∆r
2
iσyB, (4)

H ′2 =−
∆

2
σx (cosh{B}− η)− ∆

2
iσy (sinh{B}− ηB), (5)

where B =
∑
k
gk
ωk
ξk(b

†
k − bk) and ∆r = η∆. The renormal-

izied factor of tunneling is η= exp[−∑k g2k2ω2k ξ2k]. H ′0 is
the unperturbed part of H ′ and, obviously, it can be
solved exactly since the spin and bosons are decoupled.
The ground state of H ′0 is |g0〉= |s1〉|{0k}〉 (σx|s1〉= |s1〉,
|{0k}〉 is the vacuum state for every boson mode nk = 0).
H ′1 and H ′2 are treated as perturbation and they should
be as small as possible. For this purpose η is determined
to make TrB(ρBH

′
2) = 0, where ρB is the density operator

of bath. Besides, ξk is determined as

ξk =
ωk

ωk +∆r
, (6)

and because of this form H ′1 is rewritten as

H ′1 =
∑
k

Vk

[
b†kσ−+ bkσ+

]
, (7)

where Vk =∆rgkξk/ωk and σ− = (σz − iσy)/2, σ+ = (σz +
iσy)/2. When T = 0 it is easy to check that H

′
1|g0〉= 0.

This is essential in our approach.
In our treatment H ′0 is treated as the unperturbed

Hamiltonian, in which the tunneling has been already
renormalized by η coming from the contribution of diag-
onal transition of bosons. H ′1 is the perturbation relating
to the non-diagonal transition of single-boson, and H ′2,
containing all other multi-boson non-diagonal transitions,
is omitted because its contribution to physical quantities
is O(g4k) and higher. Note that 0� ξk � 1. ξk measures the
adiabatic intensity of the particle interacting with its envi-
ronment [8]. ξk ∼ 1 if ωk�∆r, while ξk� 1 for ωk�∆r.
In addition, by the choice of ξk, H

′
1 has taken into account

the effects of counter-rotating terms. In other words, the
bare coupling gk/2 in the original Hamiltonian is replaced
by the renormalized coupling Vk after the unitary trans-
formation.

Density operator. – In order to show the quantum
dynamics, we would first give the density operator
in Schrödinger representation, ρSB(t) with Hamil-
tonian H, where the subscript SB stands for the
spin-boson model. For the transformed Hamiltonian
H ′ the density operator is ρ′SB(t) = e

SρSB(t)e
−S . The

density operator in the interaction representation is
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ρ′ISB(t) = exp(iH
′
0t)ρ

′
SB(t)exp(−iH ′0t). By the equation of

motion for ρ′ISB(t) [16], we obtain the master equation

d

dt
ρ′IS (t) =−

∫ t
0

TrB [H
′
1(t), [H

′
1(t
′), ρ′IS (t

′)ρB ]] dt′, (8)

where ρ′IS (t) =TrBρ
′I
SB(t) and H ′1(t) = exp(iH ′0t)H ′1

exp(−iH ′0t). It is known that one can arrive at the Born-
Markov approximation equation neglecting retardation
in the integration, i.e., ρ′IS (t

′) is replaced by ρ′IS (t). Our
treatment is beyond this approximation.
At t= 0, the usual initial density operator is ρSB(0) =

ρS(0)ρB =

(
1 0
0 0

)
ρB . Then we can get the initial condi-

tion for our calculations: ρ′ISB(0) = ρ
′
SB(0) = e

SρSB(0)e
−S

leads to ρ′IS (0) =
(
1 0
0 0

)
. The calculation is up to the

second order g2k and the details are shown in the Appen-
dix. The solution of reduced density operator ρ′S(t) =(
ρ′11 ρ′12
ρ′21 ρ′22

)
is

ρ′11(t)− ρ′22(t) =
1

4πi

∫ −∞
∞

e−iωtdωF ∗(ω)

+
1

4πi

∫ ∞
−∞
eiωtdωF (ω), (9)

ρ′12(t)+ ρ
′
21(t) = 1−

1

2πi

×
∫ ∞
−∞

eiωtdω

ω−∑
k

[
V 2k

ω+ωk−∆r−i0+ +
V 2k

ω−ωk+∆r−i0+
] ,
(10)

where F (ω) = (ω−∆r −
∑
k

V 2k
ω−ωk−i0+ )

−1. The real and
imaginary parts of

∑
k V

2
k /(ω− i0+−ωk) are denoted as

R(ω) = −2α ∆2r
ω+∆r

×
{

ωc

ωc+∆r
− ω

ω+∆r
ln

[
ω(ωc+∆r)

∆r(ωc−ω)
]}
,

(11)

γ(ω) = 2απω
∆2r

(ω+∆r)2
(0� ω� ωc), (12)

respectively.

Dynamical quantities. – In what follows we calculate
the dynamical quantities, 〈στ (t)〉=TrSTrB [ρSBστ ](τ =
x, y, z). The reduced density operator of the original
Hamiltonian H is ρS(t) =TrBρSB(t), which can be
expressed as ρS(t) =

1
2 [1+

∑
τ 〈στ (t)〉στ ]. First, we calcu-

late 〈σz(t)〉 which is usually denoted as P (t) in the
literature,

P (t) = TrSTrB(ρSB(t)σz) =

1

π

∫ ωc
0

dω
γ(ω) cos(ωt)

[ω−∆r −R(ω)]2+ γ2(ω) , (13)

since TrBρB = 1. The integration in eq. (9) can
be done approximately by the residue theorem,
P (t) = cos(ω0t)exp(−γt), where ω0 is the solution of
equation ω0−∆r −R(ω0) = 0, and γ is the Wigner-
Weisskopf approximation of γ(ω): γ = π2α∆r. The
solution ω0 is real only when α<αc, αc = (1+∆r/ωc)/2.
This becomes the well-known result αc = 1/2 in the
scaling limit ∆/ωc� 1 [2,3]. For α>αc there is no real
solution ω0 and it means that α= αc determines the
critical point corresponding to the coherent-incoherent
transition. The coherent regime α<αc can be divided
into the underdamping part and the overdamping one
by a criterion ω0 >γ(ω0) (underdamping), or ω0 <γ(ω0)
(overdamping). In the scaling limit ∆/ωc� 1 the point
where ω0 = γ(ω0) is at α

∗
c = 0.325, which is very close

to the previous results α= 1/3 or 0.3 [12,13]. From
eq. (1) one can get a relation between 〈σy(t)〉 and 〈σz(t)〉,
〈σy(t)〉=− 1∆ d

dt 〈σz(t)〉, since i[H,σz] =−∆σy. 〈σx(t)〉 can
be calculated in the following:

〈σx(t)〉 = TrSTrB(ρ′SB(t)eSσxe−S) =

η

{
1− 1
π

∫ ∞
−∞

Γ(ω) cos(ωt) dω

[ω−Σ(ω)]2+Γ2(ω)
}
, (14)

where Σ(ω) =R(∆r +ω)−R(∆r −ω) and Γ(ω) =
γ(∆r +ω)+ γ(∆r −ω). One can check that the initial
conditions 〈σx(0)〉= 0, 〈σy(0)〉= 0, 〈σz(0)〉= 1 are exactly
satisfied. Besides, 〈σx(∞)〉= η, 〈σy(∞)〉= 0, 〈σz(∞)〉= 0,
which are the correct results for thermodynamic equilib-
rium state [5].

Entropy of entanglement. – The entropy (indeter-
minacy of the state) is a measure of the missing infor-
mation compared with the pure state of the composite
system. The more information about the composite state
is lost, the more information is contained in the corre-
lation between the substates. The greater the entropy
of system, the more strongly is the pure state of the
composite system correlated and thus entangled [17]. To
see what happens to the coherence properties due to
the interaction between the system and its surrounding
starting from a pure state, we use the von Neumann
entropy. It is defined as S(t) =−Tr(ρS log2ρS), which is
a measure of the entanglement between them. It may
be expressed in terms of the eigenvalues λ±(t) = 1/2±√〈σx(t)〉2+ 〈σy(t)〉2+ 〈σz(t)〉2/2 of the density operator
ρS as, S(t) =−λ+log 2λ+−λ−log 2λ−.
From the Hamiltonian (eq. (1)), it predicts that
〈σy(∞)〉= 0, 〈σz(∞)〉= 0, and only 〈σx(∞)〉 is nonvan-
ishing in the delocalized phase, which verify our obtained
results. So, the entropy in the long-time limit Seq is given
by λ± = 1/2±〈σx〉/2, which is shown in fig. 1 along with
the NRG results [5]. As α increases, Seq becomes large.
When α→ 1, Seq tends to one. In the scaling limit, for
α> 1, 〈σx〉= 0 and the system remains its initial state,
thus |〈σz〉|= 1 and Seq = 0. In other words, the transition
between the localized and the delocalized phase occurs
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Fig. 1: Seq as a function of α for fixed ∆/ωc = 0.01, 0.03, 0.05,
0.1, and 0.3. The NRG results is shown for comparison.

at α= 1 and the entropy decreases from unity to zero
abruptly.
In order to calculate the entropy, 〈σx(∞)〉 can also

be evaluated using the NRG applied to the equivalent
anisotropic Kondo model. The NRG data shown in fig. 1
are taken from ref. [5]. It is seen that for small tunnel-
ing our result is in good agreement with those of NRG.
However, with increasing large tunneling some discrepan-
cies appear for moderate values of the coupling. We think
that it comes possibly from the NRG discretization [13].
The dynamics of entanglement entropy displays

extremely non-Markovian features. Figure 2 shows S(t)
for different couplings with ∆= 0.1ωc. For α<α

∗
c , the

entropy increases non-monotonically from zero to a finite
value (Seq) with explicit oscillations, and would not come
close to saturation in the short-time interval which means
that quantum coherence is not directly destroyed by the
bath. At the same time, the envelope of entropy exhibits
a hump characterizing the short-time memory of the
bath. On the other hand, the oscillation-hump feature
demonstrates that the process of entropy exchange is
bidirectional. To better understand the nature of the
oscillation-hump feature and the large contribution from
quantum fluctuations, we should consider the elements of
the reduced density matrix. 〈σy(t)〉 and 〈σz(t)〉 exhibit
oscillations which represent coherence. So, the domi-
nant contribution to the oscillatory signal comes from
〈σy(t)〉2+ 〈σz(t)〉2, while the trend of entropy evolution
ascribes to 〈σx(t)〉. Thus, the oscillation of entropy shows
the coherent evolution in coherent regime.
As coupling increases, oscillations become obviously

weaker with small amplitudes and the envelop of entropy
rises rapidly with small hump (see fig. 2(b)) due to the
effects of strong dissipation. Near the crossover from
coherent to incoherent regime α∼ 1/2, the entropy shape
displays faster rising behaviors without oscillation and
the hump disappears, which is an important character

corresponding to the coherent-incoherent crossover. Note
that Seq is analytic and continuous at αc because no
phase transition happens at this point while the dynamical
crossover from damped oscillatory to pure decaying behav-
iors takes place. Thus, we cannot extract a distinguishable
feature of this crossover from Seq because of its charac-
ter of thermodynamical equilibrium even if α>αc Seq is
near to its saturation. Therefore, only transitory dynamics
of entropy could give the indicator of the crossover even
though Seq might also be regarded as an interesting order
parameter to mark quantum phase transitions.
The evolution of entanglement entropy is very different

from that of Markovian approximation. The dynamics of
S(t) is shown in fig. 3(a) with several tunnelings for α= 0.2
as well as the corresponding Markovian results. In the
Markovian evolution, the system undergoes a smooth and
fast relaxation to its final statistical mixture. It is found
that there is no short-time oscillations in the Markovian
evolution. Thus, the transient oscillatory behaviors of
entropy dynamics cannot be correctly described by the
Markovian approximation. Nevertheless, in the long-time
limit, Markovian results are consistent with Seq as
expected. The oscillation of the entropy is a hallmark of
non-Markovian dynamics in the coherent regime which is
unexpected in the Markovian dynamics. From the scaled
entropy S(t)/Seq in fig. 3(b), one can see that the entropy
displays almost synchronously with different amplitudes of
oscillations for any tunneling and eventually goes wiggly
down to Seq. It indicates that the system exchanges
entropy frequently with its environment in the short time.
In this case, the oscillations are more pronounced for the
enhancement of coherence-involved transition between
two states. From another point of view, the ability of
exchanging information becomes strong for the system
with increasing tunneling and it remains coherent for a
longer time. (Note that the unit of time is η∆, which
becomes explicitly larger with increasing tunneling.)
In the coherent regime, a sufficient number of quantum

manipulations can be performed within the coherent time.
The need to maintain quantum coherence during the oper-
ation is especially difficult to achieve in solid-state systems
such as quantum dots which couple relatively strongly
to uncontrollable environmental degrees of freedom, lead-
ing to decoherence. Only in the underdamping regime,
the quantum control has more efficiency. The promising
experimental proposal that entanglement entropy can be
measured in Cooper pair box or quantum dot scheme is
suggested by Kopp and Le Hur recently [6]. We really
expect that experimental setup is capable of testing our
predictions and such measurements would provide a proof
of the existence of oscillations in the entropy evolution
although it is not easy to probe small signals in the back-
ground of noises and thermal fluctuations.

Summary. – The entanglement entropy dynamics
of dissipative TSS is studied by means of the analytical
approach on the basis of a unitary transformation.
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Fig. 2: (Colour on-line) (a) Time evolution of entanglement entropy S(t) for ∆/ωc = 0.1 with different couplings (the
underdamping-overdamping transition point is α∗c = 0.33). (b) The scaled entropy S(t)/Seq is also shown. The arrow indicates
the increasing tendency of coupling.

Fig. 3: (Colour on-line) (a) Time evolution of S(t) as a function of ∆rt for fixed α= 0.2 with different tunnelings ∆/ωc = 0.01,
0.05, 0.1 and 0.2 (black curves) along with corresponding Markovian results (smooth red lines without wiggly oscillations).
(b) The scaled entropy S(t)/Seq is shown for its synchronization.

Analytical results of the quantum dynamics, described
by the ρS(t), is obtained for the general finite ∆/ωc
case. The entanglement entropy evolution from a pure
state is shown with explicit non-Markovian features. Our
approach is quite simple and tractable without spectral
structure dependence, and it could trigger many future
applications in other more complicated coupling systems
with realistic spectrum function, such as superconducting
qubit with Lorentz spectrum.
Here are a few words about the key ingredient of the

approach. The purpose of our unitary transformation is to
find a better way to divide the transformed Hamiltonian
into unperturbed part H ′0, which can be treated exactly,
and perturbation ones H ′1+H ′2, which may be treated by
perturbation theory. InH ′0 the tunnelling has been already
renormalized by η which comes from the contribution of
diagonal transition of bosons. H ′1 is related to the non-
diagonal transition of single-boson and all other multi-
boson non-diagonal transitions are contained in H ′2. If one

treats the coupling term in the original Hamiltonian H as
the perturbation, the dimensionless expanding parameter
is g2k/ω

2
k. For Ohmic bath s= 1 it is 2α/ω which is

logarithmic divergent in the infrared limit. By choosing
the form of η and introducing the function ξk in the
unitary transformation it is possible to treat H ′1 and H ′2 as
perturbation because of the following reason. On account
of the form of η H ′2 can be treated as perturbation because
its contribution is zero at second order of gk. The effect
of the coupling term in H ′ (H ′1) can be safely treated
by perturbation theory because the infrared divergence
in the original perturbation treatment for H is eliminated
by making choice of the function form ξk. The expanding
parameter (s= 1) is g2l ξ

2
l /ω

2
l ∼ 2αω/(ω+ η∆)2, which is

finite in the infrared limit. Besides, our approach is well
checked not only by the initial values of the correlation
functions and entanglement entropy, such as P (t= 0) = 0,
S(t= 0) = 0, and their long-time limits such as P (∞) = 0,
S(∞) = Seq.
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Appendix

In this appendix we list the details of solving the master
equation (8). The integration in eq. (8) can be done as
follows:

−
∫ t
0

TrB [H
′
1(t), [H

′
1(t
′), ρ′IS (t

′)ρB ]] dt′ =

−
∑
k

V 2k

∫ t
0

dt′
{[
nkσ−σ+ρ′IS (t

′)− (nk +1)σ−ρ′IS (t′)σ+

−nkσ+ρ′IS (t′)σ−+(nk +1)ρ′IS (t′)σ+σ−
]

× exp[i(ωk −∆r)(t− t′)]+
[
(nk +1)σ+σ−ρ′IS (t

′)

−nkσ+ρ′IS (t′)σ−− (nk +1)σ−ρ′IS (t′)σ+
+nkρ

′I
S (t

′)σ−σ+
]
exp[−i(ωk −∆r)(t− t′)]

}
, (A.1)

where nk = 1/[exp(βωk)− 1] is the Bose function. Thus,
eq. (8) can be solved by the Laplace transformation. If we
denote

ρ′IS (p) =

(
ρ′I11 ρ′I12
ρ′I21 ρ′I22

)
,

the solution of eq. (A.1) is

ρ′I11− ρ′I22 =
1/2

p+
∑
k

V 2k coth(ωk/2T )

p+ i(ωk −∆r)

+
1/2

p+
∑
k

V 2k coth(ωk/2T )

p− i(ωk −∆r)
, (A.2)

ρ′I12− ρ′I21 =
1/2

p+
∑
k

V 2k coth(ωk/2T )

p+ i(ωk −∆r)

− 1/2

p+
∑
k

V 2k coth(ωk/2T )

p− i(ωk −∆r)
, (A.3)

ρ′I12+ ρ
′I
21 =

∑
k

2V 2k
p2+(ωk −∆r)2

p

(
1+2

∑
k

V 2k coth(ωk/2T )

p2+(ωk −∆r)2
) . (A.4)

Using the relation between the Schrödinger and the
interaction representation and making the Laplace

inverse-transformation, we can get

ρ′11(t)− ρ′22(t) = cos(∆rt)(ρ′I11(t)− ρ′I22(t))
−i sin(∆rt)(ρ′I12(t)− ρ′I21(t)) =

1

4πi

∫
eptdp




1

p+ i∆r +
∑
k

V 2k coth(ωk/2T )

p+ iωk

+
1

p− i∆r +
∑
k

V 2k coth(ωk/2T )

p− iωk


 , (A.5)

ρ′12(t) + ρ
′
21(t) = ρ

′I
12(t)+ ρ

′I
21(t) =

1

2πi

∫
eptdp

∑
k

V 2k
2

p2+(ωk − η∆)2

p

(
1+2

∑
k

V 2k coth(ωk/2T )

p2+(ωk − η∆)2
) .
(A.6)

The integration path is on a line parallel to the imag-
inary axis of the complex p-plane from p= 0+− i∞ to
p= 0++ i∞.
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