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The quantum dynamics of the dissipative two-level system with nonzero bias and sub-Ohmic bath is studied
by means of the perturbation approach based on a unitary transformation. It has been shown that for the
sub-Ohmic bath it is necessary to use the non-Markovian approach, especially for the short time behavior of
the coupled system and environment. The nonequilibrium correlation P�t� has been calculated to show that a
finite bias may favor the short time coherence. The spectrum of the susceptibility ����� of the sub-Ohmic case
may have a double peak structure in the range of ��0 when the coupling � is relatively strong. Besides, the
coherence-decoherence transition point �c is determined for different 0�s�1 by the condition of ����=0�
=� when �=�c. Finally, we show that Shiba’s relation is exactly satisfied in our results.
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I. INTRODUCTION

The physics of a quantum two-level system coupled to
dissipative bosonic environment �spin-boson model �SBM��
has attracted considerable attention in last years because it
provides a universal model for numerous physical and
chemical processes �1,2�. The Hamiltonian of SBM reads
�throughout this paper we set 	=1�

H = −
1

2

�x +

1

2
��z + �

k

�kbk
†bk +

1

2�
k

gk�bk
† + bk��z,

�1�

where bk
† �bk� is the creation �annihilation� operator of boson

mode with frequency �k and �x and �z are Pauli matrices to
describe the two-level system. � is the bias, 
 is the bare
tunneling, and gk is the coupling between spin and environ-
ment.

The essential physics contained in SBM is the competi-
tion between the coherent quantum dynamics of the two-
level system �the Rabi oscillation described by the first two
term of Eq. �1�� and the dissipative effect of the environment
which tends to make the dynamics decoherent. The main
theoretical interest is to understand how the environment in-
fluences the dynamics of the two-level system and, in par-
ticular, how dissipation destroys quantum coherence �1–4�.
Both the nonequilibrium and equilibrium dynamics are of
interest for the different experimental realizations of two-
level systems. When the system can be prepared in one of the
two states by applying a strong bias for times t�0 and then
let it evolve for t�0 in a finite bias ��0, the nonequilibrium
correlation function P�t� is of primary interest �1,5�. When
the initial state preparation is not realizable, the interest then
lies in the susceptibility ���� �2,3�. Moreover, the real and
imaginary parts of ���� should satisfy Shiba’s relation
�3,6–8�.

The effect of the bosonic environment is characterized by
a spectral density J���=�k gk

2��−�k�=2��s�c
1−s���c−��

with the dimensionless coupling strength � and the hard up-
per cutoff �c ����c−�� is the usual step function� �9�. The
index s accounts for various physical situations: s=1 is the
Ohmic bath �1,2� but s�1 stands for the sub-Ohmic bath

�1,2,10–13�. There are suggestions to model a lossy resistor-
inductor-capacitor transmission line or the 1 / f noise found in
experiments by the s�1 sub-Ohmic bath �14,15�.

In this paper, we focus on the sub-Ohmic SBM �0�s
�1� since, in terms of the renormalization group approach,
the sub-Ohmic coupling represents a relevant perturbation.
In last a few years, the numerical renormalization group
method �15–19� and the quantum Monte Carlo method �20�
are used for the sub-Ohmic SBM, and their main interest is
to study the properties of the delocalized-localized quantum
phase transition. But our main interest is different from
theirs, that is, our purpose is to understand how the sub-
Ohmic bath influences the dynamics of the two-level system
and destroys the quantum coherence. Moreover, based on the
noninteracting blip approximation �1� there are claims that
the two-level system might be always localized in the sub-
Ohmic case for zero temperature, thus there should be no
coherent dynamics for the sub-Ohmic bath. However, in a
previous paper �21� we studied the unbiased ��=0� sub-
Ohmic SBM to show that a finite coherence-decoherence
transition point exists for all 0�s�1. Due to technical dif-
ficulties, little result about quantum dynamics of s�1 sub-
Ohmic bath at zero temperature with finite bias is known.

In this work the analytical approach in Ref. �21� is ex-
tended to calculate the non-Markovian dynamics of SBM
with sub-Ohmic bath 0�s�1 and finite bias ��0. Our re-
sults will show that for the sub-Ohmic bath a nonzero bias
plays an important role in the quantum dynamics and the
Markovian approximation is not good, especially for the
short time behavior of the coupled system and environment.

II. UNITARY TRANSFORMATION

Here we present a treatment based on the unitary trans-
formation approach. A unitary transformation �22,23� is ap-
plied to H, H�=exp�S�H exp�−S�, and the purpose of the
transformation is to take into account the correlation between
the spin and bosons, where

S = �
k

gk

2�k
�bk

† − bk���k�z + �1 − �k��0� . �2�

Here we introduce in S a constant �0 and a k-dependent
function �k; their form will be determined later.
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The transformation can be done to the end and the result
is

H� = H0� + H1� + H2�, �3�

H0� = −
1

2
�
�x +

1

2
��z + �

k

�kbk
†bk − �

k

gk
2

4�k
�k�2 − �k�

− �
k

gk
2

4�k
�0

2�1 − �k�2, �4�

H1� =
1

2�
k

gk�1 − �k��bk
† + bk���z − �0�

−
1

2
�
i�y�

k

gk

�k
�k�bk

† − bk� , �5�

H2� = − �
k

gk
2

2�k
�0�1 − �k�2��z − �0�

−
1

2

�x�cosh��

k

gk

�k
�k�bk

† − bk�� − �	
−

1

2

i�y�sinh��

k

gk

�k
�k�bk

† − bk��
− ��

k

gk

�k
�k�bk

† − bk�	 , �6�

where

� = exp
− �
k

gk
2

2�k
2�k

2� . �7�

Obviously, H0� can be solved exactly because the spin and
bosons are decoupled. H0� can be diagonalized by a unitary
matrix U,

U = �u v

v − u
	 , �8�

u =
1
�2

�1 −
�

W
	1/2

, v =
1
�2

�1 +
�

W
	1/2

, �9�

where W= ��2+�2
2�1/2.
The diagonalized H0� is

H̃0 = U†H0�U = −
1

2
W�z + �

k

�kbk
†bk − �

k

gk
2

4�k
�k�2 − �k�

− �
k

gk
2

4�k
�0

2�1 − �k�2. �10�

The eigenstate of H̃0 is a direct product: s��nk��, where s� is
the eigenstate of �z, s1�= � 1

0 � or s2�= � 0
1 �, and �nk�� is the

eigenstate of bosons with nk phonons for mode k. In particu-
lar, �0k�� is the vacuum state in which nk=0 for every k. The

ground state of H̃0 is

g0� = s1��0k�� , �11�

with ground state energy

Eg = −
1

2
W − �

k

gk
2

4�k
�k�2 − �k� − �

k

gk
2

4�k
�0

2�1 − �k�2.

�12�

H1� is transformed as follows:

H̃1 = U†H1�U = −
1

2�
k

gk�1 − �k��bk
† + bk�
 �

W
�z + �0�

+
�


2W
�x�

k

gk�1 − �k��bk
† + bk�

+
1

2
�
i�y�

k

gk

�k
�k�bk

† − bk� . �13�

H̃1 and H̃2=U†H2�U are treated as perturbation and they
should be as small as possible. For this purpose �0 and �k are
determined in such a way

�0 = −
�

W
, �14�

�k =
�k

�k + W
, �15�

which

H̃1 =
1

2�
k

gk�1 − �k��bk
† + bk�

�

W
�1 − �z�

+
1

2
�
�

k

gk

�k
�k�bk

†��x + i�y� + bk��x − i�y��

=
1

2
�1 − �z��

k

Qk�bk
† + bk�

+
1

2�
k

Vk�bk
†��x + i�y� + bk��x − i�y�� , �16�

where Qk=�k�, Vk=�k�
, and �k=gk / ��k+W�. Note that

H̃1g0�=0 and this is the key point in our approach. Thus Eg

in Eq. �12� is the ground state energy of H̃,

Eg = −
1

2
W − �

k

gk
2

4�k

1 − � �


�k + W
	2� . �17�

The original Hamiltonian can be solved exactly in two limits:
one is the weak-coupling limit �→0 with Eg��→0�=
− 1

2
�
2+�2 and the other is the zero tunneling limit 
→0

with Eg�
→0�=− 1
2 �−�k gk

2 /4�k. It is easily to check that
Eg in Eq. �17� goes to the correct ground state energy in
these two limits.

� in Eq. �7� is the renormalized factor for the tunneling,
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� = exp
− ��
0

1 xsdx

�x + W��2� , �18�

where W�=W /�c. For some special s values the
integration can be done easily, e.g., for s=1 �
=exp(−��ln��1+W�� /W��−1 / �1+W���) and for s=1 /2 �
=exp�−��tan−1�1 /�W�� /�W�−1 / �1+W����. For unbiased
case �=0, there is a delocalized-localized quantum phase
transition �21�. Figure 1 shows that this transition point for
s=1 /2 is at �l=0.177. But for the biased case ��0 the sys-
tem is always in the delocalized phase with finite ��0 �see
Fig. 1 for �=0.02 and 0.05�. We note that this is one of the
most important differences between the biased and unbiased
cases.

In the following, the transformed Hamiltonian is approxi-

mated as H̃� H̃0+ H̃1 since �g0H̃2g0�=0 �because of the

definition for � �Eq. �7�� and the terms in H̃2 are related to
the multiboson nondiagonal transition �like bkbk� and bk

†bk�
† ��.

The contributions of these nondiagonal terms to the physical
quantities are O�gk

4�. For zero temperature case the contribu-
tion from these multiboson nondiagonal transitions may be
dropped safely.

III. DENSITY OPERATOR AND MASTER EQUATION

The density operator in Schrödinger representation is
�SB�t� with Hamiltonian H, where the subscript SB indicates
that it is density operator for the coupled two-level system

and bath. For transformed Hamiltonian H̃ the density opera-

tor is �̃SB�t�=U†eS�SB�t�e−SU. We treat H̃0 as the unperturbed
Hamiltonian and the density operator in the interaction rep-
resentation is �24�

�̃SB
I �t� = exp�iH̃0t��̃SB�t�exp�− iH̃0t� . �19�

The equation of motion for �̃SB
I �t� is

d

dt
�̃SB

I �t� = − i�H̃1�t�, �̃SB
I �t�� . �20�

H̃1�t� is the perturbation H̃1 in the interaction representation,

H̃1�t� =
1

2
�1 − �z��

k

Qk�bk
†ei�kt + bke

−i�kt�

+
1

2�
k

Vk�bk
†��x + i�y�ei��k−W�t

+ bk��x − i�y�e−i��k−W�t� . �21�

We assume

�̃SB
I �t� = �̃S

I �t��B, �22�

where �̃S
I �t�=TrB �̃SB

I �t� is the reduced density operator. Then
we get the master equation �24� for �̃S

I �t�,

d

dt
�̃S

I �t� = − �
0

t

TrB�H̃1�t�,�H̃1�t��, �̃S
I �t���B��dt�, �23�

where we neglect all higher order �than gk
2� terms.

Because the density operator is Hermitian, i.e., ��̃S
I �t��†

= �̃S
I �t�, we can consider only two terms �̃22

I �t� and �̃21
I �t�.

Starting from Eq. �23�, for zero temperature we can reach the
following equations for them:

d

dt
�̃22

I �t� = − �
0

t

dt��
k

Vk
2�e−i��k−W��t−t�� + ei��k−W��t−t����̃22

I �t�� ,

�24�

d

dt
�̃21

I �t� = − �
0

t

dt��
k

�Qk
2e−i�k�t−t�� + Vk

2e−i��k−W��t−t����̃21
I �t�� .

�25�

Here the higher order terms are dropped. From Eq. �19� we
have

��̃11�t� �̃12�t�
�̃21�t� �̃22�t�

	 = � �̃11
I �t� �̃12

I �t�eiWt

�̃21
I �t�e−iWt �̃22

I �t�
	 , �26�

then

d

dt
�̃22�t� = − �

0

t

dt��
k

Vk
2�ei��k−W��t−t�� + e−i��k−W��t−t����̃22�t�� ,

�27�

d

dt
�̃21�t� = − iW�̃21�t� − �

0

t

dt��
k

�Qk
2e−i��k+W��t−t��

+ Vk
2e−i�k�t−t����̃21�t�� . �28�

These equations can be solved by means of the Laplace
transformation,

FIG. 1. The renormalized tunneling � vs � relations for differ-
ent biases: � /�c=0 �solid line�, 0.02 �dashed line�, and 0.05
�dashed-dotted line�.

NON-MARKOVIAN DYNAMICS OF A DISSIPATIVE TWO-… PHYSICAL REVIEW E 80, 041106 �2009�

041106-3



�̃22�p� =
�̃22�0�

p + �
k

Vk
2
 1

p − i��k − W�
+

1

p + i��k − W��
, �29�

�̃21�p� =
�̃21�0�

p + iW + �
k

 Qk

2

p + i��k + W�
+

Vk
2

p + i�k
�

. �30�

Then, the inverse Laplace transformation is performed with the so-called Bromwich path �B,

�̃22�t� =
1

2�i
�

B

dp exp�pt��̃22�p� =
�̃22�0�

2�
�

−�

� i exp�− i�t�d�

� − �R�W + �� − R�W − ��� + i���W + �� + ��W − ���
�31�

and

�̃21�t� =
1

2�i
�

B

dp exp�pt��̃21�p�

=
�̃21�0�

2�
�

−�

� i exp�− i�t�d�

� − W − ���� + i����
. �32�

Here the integration on the Bromwich path has been changed
to that on the real axis −����� by the transform p=0+

− i�, with 0+ as a positive infinitesimal. R��� and ���� are
real and imaginary parts of �k Vk

2 / ��− i0+−�k�,

R��� = ��
�2�
k

�k
2

�� − �k�

= ��
�2�
0

�

d��
J����

�� − ������ + W�2 , �33�

���� = ���
�2�
k

�k
2�� − �k� =

�J�����
�2

�� + W�2 , �34�

where J��� is the spectral density. The following abbrevia-
tion has been used:

���� = ���� +
�2

�2
2��� − W� , �35�

���� = R��� +
�2

�2
2R�� − W� . �36�

The initial density operator, �̃21�0� and �̃22�0�, of the
coupled system and its surrounding at t=0 is �SB�0�
=e−S� 1 0

0 0 ��BeS, and the corresponding initial reduced density

operator for H̃� H̃0+ H̃1 is

�̃S�0� =
1

2
�1 − �/W �
/W

�
/W 1 + �/W 	 . �37�

IV. NONEQUILIBRIUM CORRELATION

One of our purpose is to calculate the nonequilibrium cor-
relation P�t�, which is defined as P�t�=TrS�TrB��SB�t��z��,
where �SB�t� is the density operator for the original Hamil-
tonian. Because of the unitary transforms, it can be calcu-
lated as

P�t� = TrS�TrB�e−SU�̃SB�t�U†eS�z��

= TrS��̃S�t�
−
�

W
�z +

�


W
�x�	

=
�

W
�2�̃22�t� − 1� +

2�


W
Re��̃21�t�� . �38�

Thus, Eqs. �31� and �32� are to be calculated to get P�t� by
numerical integration with sub-Ohmic spectral density.

The Markovian approximation is equivalent to approxi-
mate the integration by the residue theorem with the simple
pole of the integrand of Eq. �31� at −2i�0 and that of Eq. �32�
at �0− i�0, which leads to

P�t� =
�

W
�� �

W
+ 1	exp�− 2�0t� − 1�

+
�2
2

W2 cos��0t�exp��− �0t�� , �39�

where �0=��W� is the Weisskopf-Wigner approximation for
the decay rate,

��W� =
1

2
���c

1−sWs ��
�2

W2 , �40�

and �0=W+��W� ���W� is the level shift�. Figure 2�a�
shows comparison between Eqs. �38� and �39� for weak-
coupling case �=0.02 �s=1 /2, 
 /�c=0.1, and � /�c=0.05�,
where our non-Markovian dynamics �Eq. �38�� is nearly the
same as that of the Markovian approximation �Eq. �39��.
However, for strong-coupling case �=0.1, Fig. 2�b� shows a
big difference of our non-Markovian dynamics from that of
the Markovian one, especially for the short time oscillating
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behavior which has been smeared out in Markovian approxi-
mation. The insets are for the susceptibility ����� which will
be calculated in Sec. V. Here we note that for weak-coupling
case �Fig. 2�a�� the susceptibility has one sharp peak only
and the Markovian approximation may be a good one; for
strong-coupling case �Fig. 2�b�� the susceptibility has two
peaks and the Markovian approximation is not good at least
for the short time behavior.

A nonzero bias plays an important role in the quantum
dynamics of the two-level system coupled with a sub-Ohmic
bath. Figure 3 shows the nonequilibrium correlation P�t� for
zero and nonzero biases. One can see that, apart from the
effect of bias on the behavior of long time limit �P�t→��
=−� /W�, a nonzero bias enhances the quantum coherence as
the decay rate of the Rabi oscillation for the case of � /�c
=0.05 is obviously lower than that of �=0.

Figure 4 compares the nonequilibrium correlation P�t� for
different couplings for s=1 /2 with nonzero bias � /�c=0.02.
For weak coupling �=0.01 �dashed-dotted line�, the quan-
tum coherence may be kept for a longer time, but for the
moderate coupling �=0.04 �solid line�, the Rabi oscillation
proceeds for a shorter time. For the strong coupling �
=0.091 �dashed line�, the Rabi oscillation is quite weak. We
note that for s=1 /2 and � /�c=0.02 the coherence-
decoherence transition point is at �c=0.0917, which will be
determined in Sec. V.

In our approach two approximations have been made: one

is the omission of H̃2 and the other is the usual Born approxi-
mation for deriving the master equation �Eq. �23��. Hence,
the validity of our approach should be checked and one
check may be the sum rule P�t=0�=1 for Eq. �38�. It has
been checked and is satisfied exactly for all the cases we
calculated.

V. SUSCEPTIBILITY AND COHERENCE-DECOHERENCE
TRANSITION

The retarded Green’s functions �25� are

G�t� = − i��t�Z−1 Tr�exp�− �H��exp�iHt��z exp�− iHt�,�z�� ,

�41�

where �A ,B�=AB−BA and Z=Tr�exp�−�H��. The Fourier
transformation G��� is obtained in the Appendix. The imagi-
nary part of G��� is

FIG. 2. Nonequilibrium correlation P�t� for �a� weak-coupling
case �=0.02 and �b� strong-coupling case �=0.1. The dashed lines
are the Markovian approximation �Eq. �39��. The insets show the
susceptibility ����� vs � relations.

FIG. 3. Nonequilibrium correlation P�t� for different biases:
� /�c=0 �dashed-dotted line�, 0.025 �solid line�, and 0.05 �dashed
line�. The inset shows the susceptibility ����� vs � relations for
different biases.

FIG. 4. Nonequilibrium correlation P�t� for different couplings:
alpha=0.01 �dashed-dotted line�, 0.04 �solid line�, and 0.091
�dashed line�. The inset shows the susceptibility ����� vs � rela-
tions for different couplings. The coherence-decoherence transition
point is at �c=0.0917.
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Im G��� = −
��
�2

W2 ��z�H̃0� ��������
�� − W − �����2 + �2���

−
��− ����− ��

�� + W + ��− ���2 + �2�− ��� . �42�

��z�H̃0
=1, which is the average value of �z in the ground

state of H̃0. ���� and ���� are those in Eqs. �35� and �36�.
The susceptibility ����=−G−��� and its imaginary part is

����� = �
−�

�

dt exp�i�t�
1

2
Tr�exp�− �H���z�t��z

− �z�z�t���/Z

=
��
�2

W2 � ��������
�� − W − �����2 + �2���

−
��− ����− ��

�� + W + ��− ���2 + �2�− ��� . �43�

The real part of static susceptibility ����=0� can be obtained
by the following integral:

���� = 0� =
2

�
�

0

� �����
�

d� . �44�

Another check for our approach is Shiba’s relation �3,6,7�,

lim
�→0

�����
J���

=
�

4
����� = 0��2, �45�

which should be satisfied for the two-level system coupled to
a heat bath. Table I shows that Shiba’s relation is exactly
satisfied for s�1 in our calculations.

Generally speaking, ����� is an even function of �,
���−��=�����. For the Ohmic bath �s=1� with zero bias, it
is well known �1,2� that ����� has a peak at �=
r for �
��c=1 /2, where 
r is the renormalized tunneling. Besides,

����=0�=0 when ���c=1 /2. At �=�c, the peak moves to
�=0 with ����=0�=�. �c is the coherence-decoherence
transition point �1,2�.

For the Ohmic bath �s=1� with zero bias ��=0� our result
is exactly the same, that is, ����� has a peak at ���p for
���c with �c= 1

2 �1+�
 /�c� �13,23�, where �p is the solu-
tion of following equation:

�p − W − ���p� = 0. �46�

But for nonzero bias and sub-Ohmic bath, which is the main
focus of this work, the spectrum of ����� becomes more
complicated. When coupling is weak �smaller ��, ����� has
one peak only at ���p �see the inset of Fig. 2�a��. For
stronger coupling, ����� has two peaks in the range ��0,
one is at ���p �the solution of Eq. �46�� and the other at the
place much lower than �p �see the inset of Fig. 2�b��.

The inset of Fig. 3 shows the effect of a nonzero bias on
the susceptibility �����. When � /�c increases, the double
peak structure of the susceptibility ����� for �=0 changes
gradually to a single peak structure for � /�c=0.05. Besides,
the inset of Fig. 4 shows the effect of different couplings on
the susceptibility ����� for s=1 /2 and nonzero bias � /�c
=0.02. For weak coupling �=0.01 �dashed-dotted line�, the
quantum coherence can be kept for a longer time and the
susceptibility has a sharp single peak. But for the moderate
coupling �=0.04 �solid line�, the second peak with lower
frequency emerges. For the strong coupling �=0.091
�dashed line�, the second peak with lower frequency ap-
proaches ��0 with higher peak height.

At �=�c, the second peak is at �=0 with infinite height
����=0�=� since ������s for �→0. That means, at �
=�c, the lower peak moves to �=0 while the higher peak
may still exist. Here, as in the case of zero bias and Ohmic
bath, we define �c as the coherence-decoherence transition
point for nonzero bias and sub-Ohmic bath. Mathematically,
�c is determined as the solution of

TABLE I. Shiba’s relation is checked for nonzero bias and sub-Ohmic cases. R
=lim�→0 S��� / �

4 ����0��2, where S���=����� /J���.

s 
 /�C � /�C � ���0� lim�→0 S��� R

1/4 0.1 0 0.01 34.495979 934.60225 1.0

1/4 0.1 0.05 0.03 121.46668 11587.889 1.0000004

1/4 0.1 0.1 0.05 23.147908 420.84016 1.0000088

1/2 0.1 0 0.05 51.586893 2090.1075 1.0

1/2 0.1 0.05 0.1 73.517115 4244.8999 1.0000015

1/2 0.1 0.1 0.2 19.755668 306.53734 1.0000232

3/4 0.1 0 0.1 43.000554 1452.2386 1.0

3/4 0.1 0.05 0.3 78.204433 4803.4538 1.0000023

3/4 0.1 0.1 0.5 11.44906 102.95554 1.0000465

1 0.1 0 0.5 3072.9597 7416578.9 1.0

1 0.1 0.01 0.5 694.5864 378915.56 1.0

1 0.1 0.02 0.5 205.86769 33286.362 1.0000002
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− W − ��0� = 0 �47�

because this is the condition for ����=0�=�. For s�1 the
formula for �c is quite complicated, but for nonzero bias
with Ohmic bath �s=1� it is

�c =
1

2

 ��
�2

W2

�c

�c + W
+

1

2

�2

W2

�c
2

��c + W�2�−1

, �48�

which leads to the transition point for zero bias ��=0�: �c

= 1
2 �1+�
 /�c� �23�.
Figure 5 shows the coherence-decoherence transition

point �c as functions of the index of sub-Ohmic bath s,
which may be treated as a “phase diagram” with the area of
���c as the “coherent phase” but that of ���c the “deco-
herent phase.”

VI. CONCLUDING REMARKS

The non-Markovian dynamics of the dissipative two-level
system coupled to the sub-Ohmic bath �0�s�1� with non-

zero bias has been studied by means of the perturbation ap-
proach based on a unitary transformation. It has been shown
that the Markovian approximation may be not good for the
case of sub-Ohmic bath and the non-Markovian approach
should be used especially for the short time behavior of the
coupled system and environment. The nonequilibrium corre-
lation P�t� has been calculated to show that a finite bias may
favor the short time coherence. The spectrum of the suscep-
tibility ����� of the sub-Ohmic case may have a double peak
structure in the range of ��0 when the coupling � is rela-
tively strong. Besides, the coherence-decoherence transition
point �c is determined for different 0�s�1 by the condition
of ����=0�=� when �=�c. Our results have been checked
by showing that Shiba’s relation is exactly satisfied for 0
�s�1 with nonzero bias.

The key point of our treatment is the unitary transforma-
tion with generator equation �Eq. �2��, where a parameter �k
is introduced. After the transformation a perturbation expan-
sion has been performed. If �k=0 for all k, that is, without
the transformation, the perturbation expansion would be
similar to the standard weak-coupling expansion �Bloch-
Redfield theory�. Besides, if �k=1 for all k, then our trans-
formation is the usual polaronic transformation and the per-
turbation expansion is for the small parameter 
 which is
equivalent to the non-interacting blip approximation �26�.
Our choice for 0��k�1 �Eq. �15�� is in between and thus is
an improvement on the analytical methods.
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APPENDIX

The retarded Green’s functions are

G�t� = − i��t�Z−1 Tr�exp�− �H��exp�iHt��z exp�− iHt�,�z��

= − i��t�Z−1 Tr�exp�− �H���exp�iH�t��z exp�− iH�t�,�z��

= − i��t�Z−1 Tr�exp�− �H̃��exp�iH̃t�U†�zU exp�− iH̃t�,U†�zU��

= − i��t�Z−1 Tr�exp�− �H̃�� �2

W2 ��z�t�,�z� +
��
�2

W2 ��x�t�,�x� −
��


W2 ��z�t�,�x� −
��


W2 ��x�t�,�z�	� , �A1�

where

Z = Tr�exp�− �H�� = Tr�exp�− �H̃�� ,

�A ,B�=AB−BA, and �z�x��t�=exp�iH̃t��z�x� exp�−iH̃t� is in

the Heisenberg picture of H̃. The Fourier transformation of
G�t� is denoted as G���,

G��� =
�2

W2 ���z;�z�� +
��
�2

W2 ���x;�x�� −
��


W2 ���z;�x��

−
��


W2 ���x;�z�� ,

where

FIG. 5. The coherent-decoherent transition point �c vs the index
of sub-Ohmic bath s relations for different biases: � /�c=0 �solid
circles�, 0.02 �empty squares�, and 0.05 �solid triangles�.
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��A;B�� = − i��t�Z−1 Tr�exp�− �H̃��exp�iH̃t�A exp�− iH̃t�,B��

denotes the retarded Green’s function which satisfies the fol-
lowing equation of motion:

���A;B�� = ��A,B�� + ���A,H̃�;B�� ,

��A,B�� = Z−1 Tr�exp�− �H̃��A,B�� .

Thus, we can get the following equation chain:

����x;�x�� = W��i�y ;�x�� + �
k

Qk��i�y�bk
† + bk�;�x��

− �
k

Vk���z�bk
† − bk�;�x�� , �A2�

���i�y ;�x�� = 2��z� + W���x;�x�� + �
k

Qk���x�bk
† + bk�;�x��

+ �
k

Vk���z�bk
† + bk�;�x�� , �A3�

����x�bk
† + bk�;�x�� = − �k���x�bk

† − bk�;�x�� + W��i�y�bk
†

+ bk�;�x�� + Qk��i�y ;�x�� , �A4�

����x�bk
† − bk�;�x�� = − �k���x�bk

† + bk�;�x�� + W��i�y�bk
†

− bk�;�x�� − Qk���x;�x�� , �A5�

���i�y�bk
† + bk�;�x�� = − �k��i�y�bk

† − bk�;�x�� + W���x�bk
†

+ bk�;�x�� + Qk���x;�x�� , �A6�

���i�y�bk
† − bk�;�x�� = − �k��i�y�bk

† + bk�;�x�� + W���x�bk
†

− bk�;�x�� − Qk��i�y ;�x�� , �A7�

where Vk=�
gk�k /�k and Qk=�gk�k /�k. We already made
the cutoff approximation for the equation chain at the second
order of gk. Besides, until the second order of gk we have
���z ;�x��=0, ���z ;�z��=0, and ���x ;�z��=0. So the solution
for G��� is

G��� =
��
�2

W2

�� ��z�

� − W − �
k

Vk
2/�� − �k� − �

k

Qk
2/�� − W − �k�

−
��z�

� + W − �
k

Vk
2/�� + �k� − �

k

Qk
2/�� + W + �k�	 .
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