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Abstract
Superelasticity behavior of helices has been the focus of recent research in
micro-/nano-engineering, while the traditional Kirchhoff rod model restricts itself in the
bending and torsion conditions. With the aid of the concept of a Cosserat curve, a novel
theoretical basis has been established for statics and dynamics of helices with essential
extension and shear, which is able to quantitatively analyze the superelastic mechanical
properties. Except for a good agreement with the experimental observation, numerical solutions
have shown that we cannot only predict two important properties of the superelasticity
characteristics: the breaking force and the stretch of the coil wire under the axial loading, but
also precisely describe and explain the Hooke’s constant and torque in the entire stretching and
breaking processes. The present work has provided useful information for the future
experimental investigation on superelasticity as well as its application in meta-/quantum
devices.

(Some figures in this article are in colour only in the electronic version)

As three-dimensional structures of helicity and periodicity,
micro-/nanohelices constitute a broad and active research
field in micro-/nano-engineering [1–4]. In particular, their
superelasticity behavior has attracted considerable attention
in recent years [5–7], which describes the phenomenon of
a micro-/nanohelix elastically recovering its original shape
from an extremely large axial extension to its limit. The
mechanical properties of superelasticity afford quite a lot of
opportunities for the assembly of meta-/quantum devices with
a large number of potential applications [5–8], notably in
elastic energy storage, resonating generator, reinforcement in
high-strain composites, electromagnetic wave absorbers and
other related areas benefiting from the good elastic recovery.
A case in point is the microwave nanoantennas that have large
bandwidths with an available high resonance frequency [8].

The superelasticity phenomenon was first found in a
carbon nanocoil [5] through the loading and unloading
experiments performed by atomic force microscopy. The
maximum relative elongation of the nanocoil reached ∼42%
and a Hooke’s constant of 0.12 N m−1 in the low-strain region
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was recorded. Gao et al [6] succeeded in increasing the
elongation to as large as ∼70% in the ZnO nanohelix and
attributed the superelasticity to the small thickness and the
superlattice structure of the nanohelix. In order to test the
endurance of the superelasticity behavior, Cao et al [7] have
performed on Si3N4 microcoils the effect of repeating loading
on the shape recovery and further extended the load–elongation
relation to the entire stretching and breaking processes. An
extraordinary elongation of 80–300% was reported.

However, the current theoretical works fail in presenting
a complete and accurate description of the superelasticity
phenomenon. With a derived Hooke’s constant, the classical
elasticity theory [5, 6] only qualitatively describes the elastic
properties of helices in part of the stretching process. It
neither gives a direct explanation of the loading experiments
nor considers the other important mechanical quantities, such
as the breaking force of loading, stretching of the coil wire and
torque. As a more widely used theory for continuous rods,
the Kirchhoff rod model provides an approach to study the
statics and dynamics of elastic thin rods of all kinds ranging
from climbing plants [9, 10] and the filamentary structures
of biomolecules [11–13] to the micro-/nanohelices [14, 15],
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but it restricts itself to the hypothesis of an inextensible and
unshearable rod, and is no use for superelasticity research
under high-stress loading.

In this paper, we establish a novel theory for the
superelasticity of micro-/nanohelices in the entire stretching
and breaking domain by employing the concept of the
extensible and shearable Cosserat curve [16]. The Cosserat
curve model, reduced into the Kirchhoff rod model in the
low-strain region, cannot only quantitatively explain all the
experimental observation in the literature, but also offers the
detailed mechanical quantities of the helical system, such as
the breaking force, stretching of coil wires, Hooke’s constant
and torque. We have demonstrated that the Cosserat curve
model provides a complete theoretical framework to study the
superelasticity behavior of micro-/nanohelices.

The concept of the Cosserat curve was first introduced by
Cosserat et al [17] for a directed curve with an orthonormal
triad of directors and specified by four vector fields. Whitman
and DeSilva [16] further developed the theory of the curve
as a special case of the nonlinear dynamical theory of elastic
directed curves and gave the basic equilibrium equations:

τ̂α − εαβγ τβWγ = 0, (1a)

m̂α − εαβγ (mβWγ + τβ yγ ) = 0, (1b)

where τ and m are the total force and torque across the
cross section of the curve, respectively, ε is the permutation
tensor, and W and y are the director and position deformation
measures, respectively. The Greek subscripts α, β and γ take
on the values 1, 2 and 3. ˆ( ) = ∂/∂S = λ ˙( ) = λ∂/∂s and
λ = ∂s/∂S is the stretch of the curve with S the arc length
along a fixed reference configuration and s the one along a
deformed configuration.

As shown in figures 1(a) and (b), to establish the Cosserat
curve model for exploring exactly the superelasticity behavior
of micro-/nanohelices, we suppose that a uniform helix HI ,
with the radius a0, pitch b0, coil wire radius r0 and number
of coils N , is loaded under a force F along its helical axis
to transform to the elongated helix HF of radius a, pitch b
and coil wire radius r , where the elongation of the helix is
L. In this model HI is the fixed reference configuration and
HF is the deformed one. Figure 1(a′) presents a section of HI

and figure 1(b′) displays the corresponding elongated section
of HF with the stretching length LS, where Di (i = 1, 2, 3),
the director basis of HI , and di that of HF are defined by a
set of Euler angles φ0, θ0, ψ0 and φ, θ , ψ , respectively [18].
For the configuration of helix φ0, θ0, ψ̇0, φ, θ and ψ̂ are all
constants [19], and the director deformation measures W (0) of
HI and W of HF have the form

W (0)
1 = −ψ ′

0 sin θ0 cosφ0, W (0)
2 = ψ ′

0 sin θ0 sinφ0,

W (0)
3 = ψ ′

0 cos θ0,

(2a)

W1 = −ψ̂ sin θ cosφ, W2 = ψ̂ sin θ sinφ,

W3 = ψ̂ cos θ.
(2b)

Figure 1. Configuration of a helix (a) HI before and (b) HF after a
loading by a force F along its axis. (a′) A section of HI and (b′) is
the corresponding elongated section of HF .

We choose the third director D3 of HI along the tangent to the
centerline of the coil wire axis. For such a case the force and
torque in equation (1) yield

τ1 = E1 y1, τ2 = E2y2, τ3 = E3(y3 − 1) (3a)

m1 = A(W1 − W (0)
1 ), m2 = B(W2 − W (0)

2 ),

m3 = C(W3 − W (0)
3 )

(3b)

where E1 = E2 = K2Gπr 2
0 , E3 = Eπr 2

0 , A =
B = E I and C = G J . K2 is the Timoshenko shear
coefficient and is related to Poisson’s ratio ν through K2 =
[6(1 + ν)2]/[7 + 12ν + 4ν2] [20]. E and G are the Young’s
and shear moduli, respectively. I = (πr 4

0 )/4 is the moment of
inertia and J = (πr 4

0 )/2 is the polar moment of inertia of the
cross section.

The force F is assumed along the e3 axis of the fixed
Cartesian basis. We use that condition in the equilibrium
equation (1b) and obtain

B(Ŵ1 − Ŵ (0)
1 )− (B − C)W2W3 + BW (0)

2 W3 − CW (0)
3 W2

− (E2 − E3)y2y3 − E3 y2 = 0, (4a)

C(Ŵ3 − Ŵ (0)
3 )+ B(W (0)

1 W2 − W (0)
2 W1) = 0. (4b)

Two relations of Euler angles can be determined: φ = φ0

is obtained from equations (2) and (4b), while ψ̂ = ψ̇0 is
derived from ψ̂ = λ/

√
a2 + b2 [16]. The position vectors

obtained from equation (1a) of HF satisfy

y1 = − F

E2
sin θ cosφ0, y2 = F

E2
sin θ sinφ0,

y3 = F

E3
cos θ + 1.

(5)

From equation (6), we can have not only the stretching λ:

λ =
√

F2

E2
2

sin2 θ +
(

F

E3
cos θ + 1

)2

, (6)
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but also the radius and pitch of HI and HF in terms of the Euler
angles:

a0 = sin θ0

ψ̇0
, b0 = 2π cos θ0

ψ̇0
, (7a)

a = 1

ψ̇0

[(
F

E3
cos θ + 1

)
− F

E2
cos θ

]
sin θ,

b = 2π

ψ̇0

[
F

E2
sin2 θ +

(
F

E3
cos θ + 1

)
cos θ

]
.

(7b)

By virtue of equations (2) and (5) and the resultant φ = φ0,
ψ̂ = ψ̇0, equation (4a) can be rewritten as(

1

E3
− 1

E2

)
cos θ sin θF2 + sin θF − Cψ̇2

0 (cos θ − cos θ0)

× sin θ + Bψ̇2
0 (sin θ − sin θ0) cos θ = 0. (8)

Following Whitman and DeSilva [16], we can further find that
in our case the torque along the same direction as that of the
force F obeys the expression

M = Bψ̇0(sin θ − sin θ0) sin θ + Cψ̇0(cos θ − cos θ0) cos θ.
(9)

Hooke’s constant h of HF is given by Hooke’s law: h =
dF/dL. From equations (7) and (8), we have the form of

h = − P1 P4

N(P3 P4 + P2)
,

where

P1 ≡ [ψ̇/2π]
/[

1 + 2F cos θ

(
1

E3
− 1

E2

)]

P2 ≡ 2

(
1

E3
− 1

E2

)
cos θ sin θF + sin θ

P3 ≡ −
[

1

E2
+

(
1

E3
− 1

E2

)
cos2 θ

]

×
[

1 + 2F cos θ

(
1

E3
− 1

E2

)]−1

P4 ≡
(

1

E3
− 1

E2

)
1 − 2 cos2 θ

sin θ
F2 − cos θ

sin θ
F + ψ̇2

0 (B − C)

× 1 − 2 cos2 θ

sin θ
− Bψ̇2

0 sin θ − Cψ̇2
0 cos θ0

cos θ

sin θ
.

(10)

It turns out that with a knowledge of the geometry
parameters a0, b0, r0 and N of the undeformed helix HI and
the applied load force F or torque M , the radius a, pitch b,
coil wire radius r and Hooke’s constant h of HF can be derived
through equations (6)–(10) with the conservation of length l =
λl0 and that of coil wire volume, where l = N

√
(2πa)2 + b2

and l0 = N
√
(2πa0)2 + b2

0 are the unwound length of the coil
wire after and before the loading, respectively (as shown in
figures 1(a) and (b)). It should be noted that we can have
E1,2 → ∞ and E3 → ∞ in the Cosserat curve model to
describe the rod with infinite resistance to shear deformation
and extension, respectively, where the former effect plays a
more important role during the extremely large axial stretching
for the superelasticity behavior of micro-/nanohelices. The

Kirchhoff rod model can be easily recovered by omitting both
kinds of deformation, i.e. E1,2,3 → ∞. Through equation (8),
the loading force FK in the Kirchhoff rod model is subjected to
the constraint with respect to E2,3 → ∞:

FK = ψ̇2
0

[
B cos θ

(
sin θ0

sin θ
− 1

)
+ C(cos θ − cos θ0)

]
,

(11)
which leads to the Kirchhoff Hooke’s constant hK taking the
particularly simple and explicit form:

hK = ψ̇2
0

[
(C − B)+ B sin θ0

(
cos2 θ

sin3 θ
+ 1

sin θ

)]
. (12)

From equation (12) we can deduce the Kirchhoff Hooke’s
constant hK0 in the absence of the load:

hK0 = ψ̇3
0

2πN

(
G J + E I

τ 2
0

k2
0

)
, (13)

where k0 = ψ̇0 sin θ0 and τ0 = ψ̇0 cos θ0 are the curvature
and torsion, respectively. Equation (13) is consistent with the
expression of Hooke’s constant from the Kirchhoff rod model
under the assumption J = I and G = E [14] (also note that
λ in [6] is the same as ψ̇0 in the present paper). The above
argument shows that the present Cosserat curve model, as the
developed theory from the Kirchhoff rod model, provides a
new theoretical basis for studies of the statics and dynamics
of helices with the contribution of rod shear and extension.

We now demonstrate the proposed Cosserat curve
model through the loading experiments of the superelasticity
behavior for the two typical helices (microcoil and nanocoil).
Figures 2(a) and (b) present the theoretical calculations
(solid curves) of the load versus elongation, deduced from
equations (7) and (8), for the Si3N4 microcoil [7] and carbon
nanocoil [5], respectively. In the calculation, we employ the
parameters of a0 = 80 μm, b0 = 200 μm, r0 = 2.58 μm,
N = 8, E = 240 GPa [7] and ν = 0.25 [21] for the Si3N4

microcoil, and a0 = 0.38 μm, b0 = 2 μm, r0 = 0.1 μm,
N = 10, G = 2.5 GPa and ν = 0.27 [5] for the carbon
nanocoil, where the geometry parameters are all from the SEM
images. To make a direct comparison, we have also shown
the experimental data (squares) of the Si3N4 microcoil [7] and
carbon nanocoil [5]. At the beginning of the loading process,
as displayed in figures 2(a′) and (b′), we note that for both of
the Si3N4 microcoil and carbon nanocoil there are the linear
regions, i.e. an elastic spring behavior, followed by the increase
in the slope. The good agreement between the theoretical and
experimental results implies that the Cosserat curve model can
be well used to explain the loading experiments for both the
micro- and nanohelices.

Moreover, the Cosserat curve model can reveal accurately
the endurance of the superelasticity behavior through Fbreak,
which is the force at which failure occurred for a helix, i.e.
a measure of the ability of a helix to resist the stretching
force. According to the definition of the Young’s modulus
and Hooke’s law, we have h = hS = E A/ l0 at the breaking
point, with hS the spring constant of the coil wire and A
the cross-sectional area of the coil wire after loading (A =

3
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Figure 2. Theoretical calculation (solid curves) and experimental
data (squares) of the load versus elongation in the low-strain region
for (a) Si3N4 microcoil and (b) carbon nanocoil, together with the
response in the linear elastic domain of the helix for (a′) Si3N4

microcoil and (b′) carbon nanocoil.

πr 2
0/λ). Together with equations (7), (8) and (10), we can

get Fbreak = 3.45 GPa for the Si3N4 microcoil shown in
figure 2(a). This result is quite reasonable compared with the
deduced data from the loading experiments, which is a little
larger than 2.73 GPa [7]. The ∼20% difference between our
theoretical and the experimental results may be due to the
assumption of a constant Young’s and shear moduli during the
entire loading region. In contrast, the Kirchhoff rod model fails
in predicting the breaking force of the microcoil with a much
smaller Fbreak of 0.82 GPa derived from equations (11) and (12)
and the relation of h = Eπr 2

0/ l0. For the carbon nanocoil in
figure 2(b), we deduce Fbreak = 0.52 GPa. It is clear that the
carbon nanocoil has the weaker ability to resist the stretching
force than the Si3N4 microcoil does, consistent with the fact
that the latter is harder than the former.

With the knowledge of the breaking force, we further
show in figure 3 the load versus elongation of the entire
stretching and breaking processes for both the Si3N4 microcoil
and carbon nanocoil. The theoretical lineshapes obtained from
equations (7) and (8) (black curves) are similar to the load–
elongation curve measured by Cao et al [7]. We divide the
load–elongation curve into three stages. Stage I is the linear
elastic domain of the helix. In this region the helix is loaded by
a very small force, which leads to an almost linear relationship
between the force and the elongation. On strengthening the
load in stage II, the elongation increases nonlinearly and the
helix is pulled into a taut configuration. Stage III is a linear
elastic domain of the coil wire, where the taut helix is further
extended to a straight wire by a larger loading force. The force
linearly follows an abrupt slope to a much higher value, which
implies a huge change of the strain.

In figure 3, we have also illustrated the load–elongation
curves in the Kirchhoff rod model (red curves) from

Figure 3. Load versus elongation based on the Cosserat curve model
(black curves) and the Kirchhoff rod model (red curves) during the
entire stretching and breaking process for (a) Si3N4 microcoil and
(b) carbon nanocoil.

equation (11). It is found that in the low-strain region, i.e. stage
I and the beginning part of stage II, there is little difference
between the results from the two models. However, as the
elongation increases in the high-strain region, the loading force
of the Kirchhoff rod model rises faster than that of the Cosserat
curve model. As we know, compared with the original length
of the coil wire the stretch is too small to be considered due
to the small loading force in the low-strain region, the coil
wire can be regarded as an inextensible and unshearable rod,
i.e. the Kirchhoff rod. This assumption becomes invalid in
the high-strain region, where for the same elongation the force
required to extend the Kirchhoff rod of infinite resistance to
shear and extension is larger than the one loading the Cosserat
curve with finite E and G. Nevertheless, the Young’s moduli
of materials are still far smaller than infinity in the Kirchhoff
rod model to determine the physical quantities, such as hS

here. That contradiction in the Kirchhoff rod model leads to
the over-underestimation of the breaking force for the Si3N4

microcoil. Therefore, the proposed Cosserat curve model can
get rid of the limitation of the traditional Kirchhoff rod model
and give a complete description of the load–elongation relation
for the superelasticity behavior during the entire stretching and
breaking processes.
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Figure 4. Elongation dependence of stretch length LS for (a) Si3N4

microcoil and (b) carbon nanocoil.

The particular importance of the Cosserat curve model
lies in the ability to deduce another important property of the
superelasticity behavior, i.e. the stretch of a coil wire under the
load along the helical axis. For the sake of making a detailed
description of the stretch for the coil wire, we calculate the
stretch length LS = (λ − 1)l0 based on equation (6), which
reveals that LS is determined by the loading force as well as
the helical parameters. Figures 4(a) and (b) illustrate how
the stretch length LS depends on the elongation in the case
of the tensile loading experiment for the Si3N4 microcoil and
carbon nanocoil, respectively. The stretch length LS is found
to obey the accelerating rise with increasing elongation, where
the linear fitted value of the growth rate ∂LS/∂L continuously
goes up from zero to almost one during the entire loading
process. Judging from the definition of growth rate, it describes
the relationship between the elongation �L and stretch length
�LS under the same unit change of the loading force �F .
Including the contributions from the deformation of bending,
torsion, shear and extension, �L is much larger than �LS in
the low-strain region. While up to the following extension,
�L gets closer and closer to �LS, and when the helix is
pulled into a straight wire under an extremely large loading
force, �L is equivalent to �LS. The variation of the growth
rate is attributed to the fact that the extension accounts for
a rising portion in the deformation from a very small part
to 100% in the load. Moreover, we can also learn from the
stretch–load relation in figure 4 that, when the coil wires are
pulled to their limit, the length of the Si3N4 microcoil is 1.014
times as against the unstressed state, while the carbon nanocoil

Figure 5. Theoretical calculation (solid curves) and experimental
data (squares) of Hooke’s constants versus elongation in the
low-strain region for (a) Si3N4 microcoil and (b) carbon nanocoil.
Hooke’s constant and torque are plotted as the function of elongation
based on the Cosserat curve model (black curves) and the Kirchhoff
rod model (red curves) during the entire stretching and breaking
process for (c), (e) Si3N4 microcoil, and (d), (f) carbon nanocoil,
respectively.

extends 1.080 times. It is clear that the elongations of the coil
wires are comparable to the original length, which reiterates
that extension plays a key role in the high-strain region of the
superelasticity behavior.

Among the various mechanical quantities of helices, the
Hooke’s constant enjoys obvious advantages in describing
the superelasticity behavior in a direct and precise way.
Figures 5(a) and (b) present Hooke’s constants for the
Si3N4 microcoil and carbon nanocoil in the low-strain
region, respectively, where our theoretical Hooke’s constants
versus elongation reproduce well the experimental data
(squares) [5, 7] by the use of equation (10) and the helical
parameters in figure 2. We note that at the beginning of
the load, i.e. the linear elastic domain of the helix, Hooke’s
constants are almost immune to the elongation, where the
average values give 0.32 N m−1 for the Si3N4 microcoil and
0.12 N m−1 for the carbon nanocoil, in good agreement with
the experimental data from the linear fit of the load–elongation
curves [5, 7]. On continuing the load, the Hooke’s constants are
enhanced gradually with elongation. In figures 5(c) and (d),
we extend the Hooke’s constant to the high-strain region:
Hooke’s constants (black curves) increase dramatically with
elongation and when the taut helices are further straightened to
the breaking point they increase gently to enter in the saturation
of 1198.80 N m−1 for the Si3N4 microcoil and 6.21 N m−1 for
the carbon nanocoil, which are the spring constants of the coil
wires hS. The plateau of saturation consists with the nearly
linear relation of load–elongation at the end of the loading
measured by Cao et al [7].

To explain the Hooke’s constant in the entire stretching
process, we combine Hooke’s constant for a helix h =

5
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�F/�L with the spring constant of the relevant coil wire hS =
�F cos ζ/�LS, and get the expression h = hS cos ζ �LS

�L ,
with ζ the radial angle (as shown in figure 1(b)). Since
the spring constant of the coil wire is assumed to be fixed,
Hooke’s constant is determined by the radial angle as well
as the relationship of �L and �LS revealed in figure 4. In
the linear elastic domain of the helix, the deformation of
the helix is rather tiny with loading force, both cos ζ and
�LS/�L increasing very slowly with load. Together with
�LS/�L � 1, the Hooke’s constant therefore is small and
increases slowly enough, which can be regarded as remaining
the same in this region. With further extension, both cos ζ and
�LS/�L gradually rise to one due to conversion into a straight
wire. Consequently, the elongation benefits Hooke’s constant
and increases it continuously to as large as the spring constant
of the coil wire. It is noted that the plateau of saturation, which
precisely reflects the loading characteristic near the breaking
point, results from the gentle increase of cos ζ and �LS/�L
in that region.

Figures 5(c) and (d) also display Hooke’s constants (red
curves) versus elongation obtained from the Kirchhoff rod
model of equation (12). It is found that the h–elongation curve
strays away from that of the Cosserat curve model with a faster
increase and does not exhibit the plateau of saturation in the
high-strain region. If we suppose that the coil wires cannot be
stretched to breaking, Hooke’s constants will increase further
to infinity when the elongation reaches its limits, consistent
with the fact that the Kirchhoff rods have infinite resistance
to shear and extension. The above analysis suggests that the
hypothesis of an inextensible and unshearable rod makes the
Kirchhoff rod model not suitable for describing the mechanics
of the high stress acting across the cross section of the coil
wires, and therefore the superelasticity characteristics of the
micro-/nanohelices [5–7].

Finally, we show in figures 5(e) and (f) how the torque
(equation (9)) varies with elongation for the Si3N4 microcoil
and carbon nanocoil, respectively. It is found that at the
beginning of the loads the torque decreases from zero to the
minimum of negative values, and then increases continuously
in the following regions (black curves). As we know, the
helical torque is determined by the competition between the
change of the curvature ψ̇0 sin θ and torsion ψ̇0 cos θ , with the
former decreasing from the intrinsic curvature ψ ′

0 sin θ0 and
the latter increasing from the intrinsic torsion ψ ′

0 cos θ0 during
the load. The torque–elongation curve elaborately describes
the movement of the coil wire: in each loading process the
helix begins from contrarotating on its axis with a negative
torque followed by a clockwise revoltion. Compared with the
Cosserat curve model, the Kirchhoff rod model [14] overrates
the torque and misses its behavior in the linear elastic domain
of the coil wire due to the assumption of infinite resistance
to shear and extension (red curves). Although, as far as we
know, no data are available for the experimental torque of
helices, the present Cosserat curve model not only gives some
important insights on the dynamics of helices from the torque
point of view but also supplies a reliable reference for further
experimental research.

In summary, we have shed light on the superelasticity
behavior of micro-/nanohelices in the entire stretching and
breaking domain by considering a Cosserat curve with four
kinds of deformation of bending, torsion, extension and shear.
We have derived the expressions of the mechanical quantities
that allow us to predict the ability of a helix to resist stretching
forces as well as the stretching of the corresponding coil wire.
By quantitatively explaining all the experimental observations
in the literature, we cannot only give a detailed analysis
of the Hooke’s constant, but also offer the experimental
investigation a reliable reference for torque. In particular,
it is shown that the Cosserat curve model can effectively
get rid of the limitation of the traditional Kirchhoff rod
model in the high-strain region through precisely describing
the important superelastic mechanical properties, while the
Cosserat curve model degenerated into the Kirchhoff rod
model in the low-strain region by considering the rod to have
infinite resistance to extension and shear. With the knowledge
of the yielded mechanical properties of the superelasticity
behavior in helices, our present work opens doors to the
building blocks of meta-/quantum devices with a large number
of potential applications in micro-/nano-engineering.
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