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Long-range linear elasticity and mechanical instability of self-scrolling
binormal nanohelices under a uniaxial load†
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Mechanical properties of self-scrolling binormal nanohelices with a rectangular cross-section are

investigated under uniaxial tensile and compressive loads using nanorobotic manipulation and

Cosserat curve theory. Stretching experiments demonstrate that small-pitch nanohelices have an

exceptionally large linear elasticity region and excellent mechanical stability, which are attributed to

their structural flexibility based on an analytical model. In comparison between helices with a circular,

square and rectangular cross-section, modeling results indicate that, while the binormal helical

structure is stretched with a large strain, the stress on the material remains low. This is of particular

significance for such applications as elastic components in micro-/nanoelectromechanical systems

(MEMS/NEMS). The mechanical instability of a self-scrolling nanohelix under compressive load is

also investigated, and the low critical load for buckling suggests that the self-scrolling nanohelices are

more suitable for extension springs in MEMS/NEMS.
1. Introduction

Nanohelices can provide a wide range of enhanced functional-

ities for micro-/nanoelectromechanical systems (MEMS/

NEMS)1–3 due to their helical shape,4,5 superelasticity,6–8 pie-

zoresistive and piezoelectric properties,9–11 as well as other

characteristics.12 Recently, strain-induced self-scrolling nano-

helices have attracted considerable attention due to their highly

controllable fabrication method that combines bottom-up thin

film growth with top-down lithographic patterning.13–15 This

fabrication technique can create hybrid 3-D structures composed

of metal, dielectric, and polymeric materials as well as semi-

conductor heterostructures.16–20 More recently, small-pitch SiGe/

Si and SiGe/Si/Cr nanohelices have been obtained.21,22
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For nanohelices to serve as components for MEMS/NEMS or

nanomechanical devices, their mechanical properties must be

well understood. The mechanical properties of nanohelices under

tensile loading have been investigated for several different

materials, including carbon,6 ZnO,7 Si3N4
8 and InGaAs/GaAs.23

Their mechanical stretching behavior was modeled using clas-

sical elasticity theory and the Kirchhoff rod model assuming an

inextensible and unshearable rod. One report on the mechanical

instability of a nanohelix under a compressive load demonstrated

a nonlinear response of a buckling carbon nanohelix with

a circular cross-section.24 Though it is common to synthesize

nanohelices with non-circular cross-sectional shapes, e.g. binor-

mal helices, using top-down or bottom-up approaches,2,13,25,26

a systematic study of the mechanical properties of these types of

nanohelices under a uniaxial load has not been conducted.

In this paper, nanorobotic manipulation is used to examine the

mechanical properties of a small-pitch SiGe/Si/Cr nanohelix

under tensile and compressive loads. An analytical model based

on Cosserat curve theory27–29 is developed to explore the

mechanical properties of both normal and binormal nanohelices

with a rectangular cross-section, which are compared to helices

with a circular or square cross-section. A primary advantage of

Cosserat curve theory is that it assumes the materials are

extensible and shearable. Among the four different types of the

cross-sectional shapes, the binormal helix shows the largest linear

elasticity under axial deformation. By quantitatively analyzing

uniaxial loading experiments and modeling, three regions are

identified: the final helical shape and the critical tensile force that

causes fracture, the critical compressive force that causes buck-

ling, and the spring constant between these two critical loads.
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2. Results and discussion

2.1. Self-assembly of a nanohelix on an AFM tip for

nanorobotic manipulation

Small-pitch nanohelices were fabricated based on self-scrolling

ribbons composed of stacked SiGe/Si/Cr thin films, as shown in

Fig. 1(a). Nanorobotic manipulation in an SEM was used to

investigate the mechanical properties in which one end of the

nanohelix is glued on a manipulator probe and the other end of

the helix manipulated by an AFM tip (Fig. 1(b)). When the

distance between the manipulator probe and the AFM tip is less

than approximately 0.45 mm, the inner wall of the free end of

a nanohelix is attracted to the AFM tip (Fig. 1(c) and (d)) mainly

by electrostatic forces. If the nanohelix is pulled away from the

AFM tip along its helical axis, it is initially stretched and then

detaches from the AFM tip when the applied force is over ca.

17 nN (Fig. 1(e) and (f)). Attaching a nanohelix to an AFM tip

was performed with varied misalignment angles. An example is

shown in Fig. 1(g)–(k). The results show that the attachment of

the nanohelix on the AFM tip does not require precise alignment.

The nanohelix was then firmly clamped onto the AFM tip using

electron beam induced deposition (EBID) for manipulation.

Fig. 2 (a–d) Tensile test of the nanohelix between the AFM cantilever

and the tungsten probe. (e) Schematic illustration of a normal helix. (f)

Schematic illustration of an unloaded binormal helix HI with a rectan-

gular cross-section. (g) Configuration of the binormal helix HF after

stretching by a tensile force F along its helical axis. (h and i) Configu-

ration of a binormal helix after stretching to its limit.
2.2. Nanohelices under tensile load

Fig. 2(a)–(d) show the reproducible sequential elastic deforma-

tion and recovery process of a SiGe/Si/Cr nanohelix under tensile

loading and unloading along its helical axis. In the experiment,

the helix was elongated more than 170% of its original length. It

then spontaneously detached from the AFM tip due to the large

tensile force, and no plastic deformation was observed.

Based on Cosserat curve theory,30 an analytical model is

developed to explore the mechanical behavior of the normal and

binormal helices, as shown in Fig. 2(e) and (f). The modeling

results show that the load F and the geometry parameters of the

radius (a0 for the undeformed helix and a for the deformed one),

and pitch (b0 for the undeformed helix and b for the deformed
Fig. 1 (a) SEM images of an as-fabricated SiGe/Si/Cr nanohelix teth-

ered on a Si substrate. (b–f) The nanohelix was attached to a manipulator

probe and moved towards and away from the AFM tip. All frames have

the same scale bar. (g–k) A sequence of frames shows the self-assembly of

the misaligned nanohelix on the AFM tip. All frames have the same

scale bar.
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one), shown in Fig. 2(f) and (g), are related to the intermediate
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where Dh I2/I1, i¼ 2 (or i¼ 1) for a binormal (or normal) helix,

di2 is the Kronecker delta, E1 ¼ E2 ¼ KGtw, E3 ¼ Etw, A ¼ EI1,

B ¼ EI2, and C ¼ 4GI1I2/(I1 + I2) according to the scaled

torsional stiffness.31 The parameters w and t (w > t) are the width

and the thickness of the curved nanobelt, respectively. K is the

Timoshenko shear coefficient which is related to Poisson’s ratio n

through K ¼ (5 + 5n)/(6 + 5n).32 E and G ¼ E/2(1 + n) are the

Young’s and shear moduli of the nanobelt, respectively. I1 ¼ w3t/

12 and I2 ¼ wt3/12 are the moments of inertia. (Details on

modeling are available in the ESI†.)

The analytical model is compared to loading experiments of

the SiGe/Si/Cr nanohelix, a typical binormal helix with
This journal is ª The Royal Society of Chemistry 2011



a rectangular cross-section shape.33,34 Fig. 3(a) shows the

dependence of the tensile load on the elongation of the nanohelix,

in which the squares are from the experimental data and the solid

curve is from the modeling. The relation between the applied

force and elongation remains linear as the nanohelix is elongated

to approximately 189%. In comparison with that of the nano-

helices with a circular cross-section, e.g. 72% for the Si3N4

microcoil8 and 15% for the carbon nanocoil,6 the small-pitch self-

scrolling nanohelix with a rectangular cross-section exhibits

a much larger linear elastic range. The modeling result is from

eqn (1) and (2) with parameters a0 ¼ 1.5 mm, b0 ¼ 1.6 mm, t ¼
40 nm, w ¼ 0.8 mm, effective turns N ¼ 9, E ¼ 140 GPa, nSiGe ¼
nSi ¼ 0.27, and vCr ¼ 0.21.35,36 The modeling results agree with

experiments well, which imply that the Cosserat curve model can

also be used to analyze binormal helices under uniaxial load.

Following the linear elastic domain of the nanohelix, a larger

load is required to extend the nanohelix into a taut configuration.

The nonlinear relationship between the elongation and the load

shows that there is a huge change of the strain in this domain.

The modeling results also indicate that the linear elasticity region

of the nanohelices is significantly influenced by the cross-

sectional shape of the helix. Fig. 3(b) shows the dependence of

the tensile load on elongation for helices with four different

cross-sectional shapes, i.e. rectangle (normal and binormal),

square and circle, from eqn (1) and (2). We assume that, except

for the cross-sectional shape, the four types of helices have the

same parameters as those of the fabricated SiGe/Si/Cr nanohelix,

including the area of the cross-section, the radius, the pitch, the

number of turns, and the material parameters. The plot shows

different linear regions of load versus elongation (solid line) for

those four types of helices: the binormal helix possesses the

largest elasticity linear region of ca. 220%, while the normal helix

has the least of ca. 10%. The linear elasticity regions for the helix
Fig. 3 (a) Experimental data of tensile load in the low-strain regime

(squares) and theoretical calculation (solid curve) of load in the entire

stretching region. (The experimental error, considered in the square, is

attributed to the uncertainty in the position of the nanohelix.) (b) Tensile

load and (c) relative materials stretch versus elongation for four types of

helices with different shapes of the cross-section: (I) rectangle (binormal

helix), (II) circle, (III) square and (IV) rectangle (normal helix). (d)

Theoretical calculation of the spring constant versus elongation in the

entire stretching region of the SiGe/Si/Cr nanohelix.
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with a circle-shaped cross-section and a square-shaped cross-

section are similar, ca. 100% and ca. 87%, respectively. The

varied linear elasticity region of helices with different cross-

sectional shapes is mainly due to the difference in the material

stretch (l) of the helical ribbon or the helical filament under axial

load. This can also be deduced by using the Cosserat curve

model. The material stretch of a helix is given by

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2

E2
1

sin2
qþ

�
F

E3

cos qþ 1

�2
s

(3)

Fig. 3(c) illustrates the dependence of the relative stretch

(DLS ¼ l � 1) of the four types of helices on their elongation in

which the binormal helix presents the smallest DLS for the same

elongation. The results imply that for helices under axial loading

situation the binormal helix is most stable under large defor-

mation compared to the other three types of helices. Further-

more, unlike a helix with a circular cross-section, two different

helical shapes of a stretched binormal helix can occur under

a large tensile load if both ends are fixed. As shown in Fig. 2(g), x

is defined as the distance between two adjacent exposed edges of

the nanobelt along its width direction, which is expressed by

x ¼ 2abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aÞ2þðb=2Þ2

q � w: (4)

When a binormal helix is stretched to its limit, the sides of the

ribbon are almost parallel to the helical axis and the relationship

w2 þ ð2paÞ2þb2 ¼ 2

2
64ð2aÞ2þ

0
@b

2
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A
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is satisfied. If the geometry parameters from eqn (5) lead to x $

0 in eqn (4), the binormal helix can reach its elongation limit

(Fig. 2(h)), similar to that of a helix with a circular cross-section.

A tubular-like shape forms25 as the edges of the adjacent turns of

the helical ribbon touch each other (x# 0), as shown in Fig. 2(i).

The final helical state of the binormal helix can be derived from

eqn (4) before fracture. In combination with eqn (1) and (2), one

can determine that the SiGe/Si/Cr nanohelix retains a helical

shape with a radius of 0.4 mm, and a pitch of 9.2 mm when

stretched to its limit by a critical force of 979 nN. The corre-

sponding relative stretch is 0.02%, much smaller than 0.30% for

Si3N4 and 2.30% for carbon nanocoils with a circular cross-

section.28

The spring constant for the normal and binormal helices can

be calculated by:

k ¼ � P1P4

NðP3P4 þ P2Þ (6)

where
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Fig. 3(d) presents the spring constant of the SiGe/Si/Cr nanohelix

in the entire stretching region before fracture, obtained using eqn

(6) and (7). In the linear elasticity region of the SiGe/Si/Cr

nanohelix, the spring constant k is a constant and the average

value is calculated as 5.5 � 10�3 N m�1, which agrees with

experimental data. In the high strain regime of the helix, the

spring constant increases rapidly and eventually reaches a critical

value of 1.4 � 10�1 N m�1 before fracture.

2.3. Nanohelices under compressive load

One application of nanohelices is as a wirelessly controlled probe

for micromanipulation in fluid. For example, helical swimming

microrobots such as artificial bacterial flagella (ABF) have been

realized using a corkscrew motion for propulsion.37,38 Investi-

gating the mechanical instability of this helical micromachine is

important in understanding its performance limits as a manipu-

lation tool. An axial compressive force was applied on a SiGe/Si/

Cr nanohelix using a manipulator probe to investigate the

buckling of the nanohelix, as shown in Fig. 4(a)–(d). The results

indicate that initially the nanohelix is compressed along its helical

axis, however, when the compressive force reaches approxi-

mately 6 nN, the helical structure becomes mechanically unstable
Fig. 4 (a–d) A series of SEM images showing the deformation of the

nanohelix under an increasing compressive load. (a) Axial compression

with a force smaller than the Fcr. (b–d) Buckling of the nanohelix. All

frames have the same scale bar. (e) Illustration of a binormal helix under

an axial compression in which F < Fcr. (f) Illustration of a binormal helix

under the critical load Fcr.
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and buckling occurs, as shown in Fig. 4(b). The buckling

becomes more severe as the applied force increases by translating

the tungsten probe towards the AFM tip, as shown in Fig. 4(c)

and (d). In contrast to a helix under a tensile force, in which the

spring constant of the helix increases with a large stretch, the

spring constant of a helix under compression shows the opposite

effect in the buckling regime. The diagram in Fig. 5(a) shows the

dependence of the compressive load on the deformation of the

SiGe/Si/Cr nanohelix in which experimental results are marked

by squares and the modeling results by the solid line. The

deformation of the helix under compression, measured from the

SEM images, is defined as the shortened length of the helix

between its fixed end on the manipulator probe and the AFM tip.

When the compressive force (F) is smaller than the critical load

Fcr (dashed line), the relation between the deformation and the

compressive load can be predicted using the Cosserat curve

model. To estimate the critical load Fcr of the SiGe/Si/Cr nano-

helix, we define the corresponding length as lcr with the decrease

of Dcr, and x the pitch angle, as schematically shown in Fig. 4(e)

and (f). The critical load of a buckling slender body is given by:39

Fcr ¼ p2a0

l2cr
(8)

For a helical body, the bending rigidity can be obtained by

a0 ¼ sin x

1þ sin2
x

2EI2
þ 1� sin2

x

2GJ
Fig. 5 Experimental data (squares) and theoretical calculation (solid

line) of (a) load and (b) spring constant versus deformation in the axial

compression and buckling regime. (The experimental error is attributed

to the uncertainty in the position of the nanohelix. In (b), it is considered

in the square.)

This journal is ª The Royal Society of Chemistry 2011



and lcr ¼ l0 � Dcr with

Dcr ¼ 2pNa30ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2

x
p �

sin2
x

EI2
þ 1� sin2

x

GJ

�
Fcr:

Since the pitch angle x is small sin x ¼ lcr/s0 with the total length

of the helical ribbon s0 ¼ 2pNa0, and sin2x ¼ 0. Eqn (8) can then

be rewritten as:
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And the critical value of Fcr is given by:
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Using eqn (10) and the geometry parameters of the SiGe/Si/Cr

nanohelix, the critical load Fcr ¼ 6 nN is determined, which is

consistent with experimental results. When the compressive load

is larger than Fcr, the nanospring is mechanically unstable and

buckling occurs. Fig. 5(b) shows the spring constant of the

nanohelix in the compression regime. The spring constant,

derived from eqn (6), remains a constant in the axial compression

domain (solid line), and decreases linearly from 3 � 10�3 N m�1

to approximately zero with increasing load in the post-buckling

regime (squares). The reason for the linear decrease of the spring

constant in the post-buckling region is unclear, but a similar

phenomenon was also reported in a carbon nanocoil when an

axial compressive force is loaded.24 The nanospring recovers to

its initial shape from the post-buckling state when the compres-

sive load is removed.

3. Conclusions

We have investigated the mechanical properties of nanohelices

with a rectangular cross-section under tensile and compressive

loads. Based on the Cosserat curve theory, a comprehensive

model for normal and binormal helices is proposed. The model

and experiments reveal that a binormal helix with a rectangular

cross-section, such as a self-scrolling nanohelix, has a large linear

elasticity regime and is more mechanically stable due to a lower

stretch of materials under large axial deformation. A tubular-like

shape can also be formed from binormal helices under a large

stretch. Finally, the mechanical instability of a self-scrolling

nanohelix under compressive load is investigated. With knowl-

edge of the mechanical properties of self-scrolling nanohelices,

this work provides a reference for further design and fabrication

optimization of normal and binormal helices for potential

applications in MEMS/NEMS and as tools for

micromanipulation.

4. Experimental section

4.1. Fabrication

Small-pitch SiGe/Si/Cr nanohelices were fabricated by the

following procedure. The SiGe/Si hetero-film with a thickness of

11/8 nm was grown by ultrahigh vacuum chemical vapor
This journal is ª The Royal Society of Chemistry 2011
deposition (UHV-CVD) on a Si(001) substrate. The Cr layer

with a thickness of 21 nm was deposited by e-beam evaporation.

Subsequently the small-pitch nanohelix was formed by wet

chemical etching in an alkaline solution (3.7% NH4OH). The

fabrication of small-pitch nanohelices with pitch angles less than

10� can be achieved in a highly controllable fashion, when the

edge effect dominates the coiling process of these ribbon-like

patterned thin films.21,22 Finally, the samples were dried in

a supercritical point dryer to eliminate the capillary force.
4.2. Nanorobotic manipulation

To perform mechanical property characterization experiments,

a SiGe/Si/Cr nanohelix with a radius of 1.5 mm, a pitch of 1.6 mm,

a number of turns of 10 and a nanobelt width of 0.8 mm was

assembled between a tungsten probe (Picoprobe, T-4-10-1 mm)

and an AFM tip (Mikromasch, CSC38/Ti–Pt, stiffness 0.03 N

m�1). Controlled by the manipulator, the tungsten probe was

prepared by dipping the tip into a silver conductive tape and then

used to break and pick up the as-fabricated nanohelix from its

tethered end. The free end of the nanohelix was then transported

close to the AFM tip. When the distance between the manipu-

lator probe and the AFM tip is sufficiently small, the inner wall

of the nanohelix free end is attracted to the AFM tip. For the

study of mechanical properties after the self-assembly step, the

free end of the helix was clamped onto the AFM tip using elec-

tron-beam-induced deposition (EBID).4 The manipulation

processes were performed by translating the manipulator tung-

sten probe toward and away from the AFM tip, hence, uniaxial

load was applied and the applied force was measured by the

deflection of the AFM cantilever.
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