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Controllable rotational inversion in nanostructures
with dual chirality†
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Alain Gorielye

Chiral structures play an important role in natural sciences due to their great variety and potential appli-

cations. A perversion connecting two helices with opposite chirality creates a dual-chirality helical struc-

ture. In this paper, we develop a novel model to explore quantitatively the mechanical behavior of normal,

binormal and transversely isotropic helical structures with dual chirality and apply these ideas to known

nanostructures. It is found that both direction and amplitude of rotation can be finely controlled by design-

ing the cross-sectional shape. A peculiar rotational inversion of overwinding followed by unwinding,

observed in some gourd and cucumber tendril perversions, not only exists in transversely isotropic dual-

chirality helical nanobelts, but also in the binormal/normal ones when the cross-sectional aspect ratio is

close to 1. Beyond this rotational inversion region, the binormal and normal dual-chirality helical nanobelts

exhibit a fixed directional rotation of unwinding and overwinding, respectively. Moreover, in the binormal

case, the rotation of these helical nanobelts is nearly linear, which is promising as a possible design for

linear-to-rotary motion converters. The present work suggests new designs for nanoscale devices.

Introduction

Chiral structures play a prominent role in many natural and
technology processes ranging from protein configuration,1,2

development, to nanomechanics.3,4 Helices with given chirality
are critical elements in a host of applications at the nanoscale
as they provide simple springs and, more importantly, a direct
way to convert linear motion to rotational motion and
rotational motion to linear motion. An example of this conver-
sion process is the functionalized helical micro-/nano-swim-
mers, which are optimized to have a pure rotation translation
along their helical axis.5 Such swimming robots are a promis-
ing tool for single-cell-targeted drug, DNA, and enzyme deliv-
ery in vitro as well as in vivo.6–8 Conversely, in the transform-
ation from linear motion to rotational motion, elasticity plays
a key role. Yet, the linear regime of simple springs is limited
due to torsional lock-up: as a spring is pulled in simple exten-
sion, it quickly stiffens due to its inability to untwist without

one of the ends turning. An elegant solution to this mechani-
cal problem, first proposed in ref. 9, is to design a “twistless
spring” by using filaments that exhibit both left and right chir-
ality connected by a short inversion called a “perversion”, a
term introduced by the mathematician J. B. Listing to describe
the reversal of one chiral structure into another.10

This kind of helix with dual chirality was first described in
plant physiology in a letter of André-Marie Ampère.11,12 Then
Charles Darwin pointed out that a tendril with perversion
creates a twistless flexible elastic structure connecting a climb-
ing plant to its support13 (see ref. 14 for historical details).
Inspired by the tendrils, it is found that an inverted structure
can be created through an instability in a filament with intrin-
sic curvature under tension by either decreasing the tension or
increasing the intrinsic curvature.15 The structure emerging
has dual chirality and, due to its particular cancellation of
twist, has an excellent mechanical behavior of tension-exten-
sion close to an ideal linear Hookean response.9 Moreover, a
helical structure with dual chirality has a remarkable
rotational property during extension: it is reported that some
young and old cucumber tendril coils unwind and overwind
with axial extension, respectively.16

There is yet another peculiar rotational behavior of helices
with dual chirality. As presented in Fig. 1(a), we find that some
young gourd and cucumber tendrils, always overwind in the
beginning of axial extension, and then unwind when elonga-
tion is further increased (ESI Movie S1† for gourd and ESI
Movie S2† for cucumber). In this experiment, we use a slow

†Electronic supplementary information (ESI) available. See DOI: 10.1039/
c7nr09035h

aSchool of Mathematics and Physics, Suzhou University of Science and Technology,

Suzhou 215009, China. E-mail: dailu.1106@aliyun.com
bDepartment of Physics and Astronomy, Shanghai Jiao Tong University,

800 Dongchuan Road. Minhang District, Shanghai 200240, China
cCollege of Science, Donghua University, Shanghai 201620, China
dDepartment of Mechanical and Automation Engineering, The Chinese University of

Hong Kong, Shatin NT, Hong Kong SAR, China. E-mail: lizhang@mae.cuhk.edu.hk
eMathematical Institute, University of Oxford, Oxford OX2 6GG, UK

This journal is © The Royal Society of Chemistry 2018 Nanoscale, 2018, 10, 6343–6348 | 6343

www.rsc.li/nanoscale
http://orcid.org/0000-0003-4145-7667
http://orcid.org/0000-0003-1152-8962
http://crossmark.crossref.org/dialog/?doi=10.1039/c7nr09035h&domain=pdf&date_stamp=2018-04-04


axial loading (of about 0.3 cm s−1 and 0.05 coil length per
second) so that the tendril is in a quasi-static equilibrium at
all times. Fig. 1(b) displays the rotation states of a gourd
tendril coil during axial loading. The gourd tendril coil first
overwinds when the elongation increases to 1.6 cm, and then
unwinds during the rest of the loading process. Interestingly,
this non-monotonic behavior, known as the twist-stretch
coupling, also exists in the microscopic single-chirality DNA
molecules.17,18 As extension increases, each point on the DNA
rotates around the axis by first overwinding around it (adding
a further twist in the spring) and then unwinding it (hence
removing the twist).19,20

Helical rods can be classified into three types: transversely
isotropic helices (with rotationally invariant sections such as
the squares and circles), and normal and binormal helices
with non-rotational invariant sections (such as the rectangular
or elliptical cross-sections).21 In this paper, we study the
rotational and extensional behaviour of nanohelices with dual
chirality that have either transverse isotropy or are composed
of normal and binormal helices (referred to here as “nano-
belts”). A binormal dual-chirality nanobelt can be fabricated
via a strain-driven self-rolling mechanism.22 These structures
are known to unwind during the axial extension.23 A normal
dual-chirality nanobelt can be realized by 3D direct laser
writing, which has been used to print single normal nano-
helices.24 A transversely isotropic cellulosic micro/nano-fiber
with dual-chirality can be produced by electrospinning in

liquid crystalline solutions.25 Under electronic beam exposure,
a suspended cellulosic fiber exhibits unwinding and overwind-
ing behavior.26 Therefore, it is of great practical significance to
provide an accurate theoretical description of the mechanical
properties for the normal, binormal, and isotropic dual-chiral-
ity nanohelices.

In this paper, we provide a theoretical basis for the mech-
anics of normal, binormal, and transversely isotropic helical
nanostructures with dual chirality by employing a general
extensible rod theory. We show that by modifying the shape of
the cross-section, one can tune the rotational properties of
direction and amplitude of these structures to obtain a linear
rotational response under extension. In particular, a controlla-
ble rotational inversion can be obtained from the dual-chirality
nanohelices of transverse isotropy, as well as of normal/binor-
mal in a narrow region defined by the aspect ratio of the rec-
tangular cross-section.

Modeling

The general set-up of our model is shown in Fig. 2(a)–(d). We
assume that a rod with width w and thickness t (w > t ) rolls up
into a uniform helical structure with dual chirality HPI, with
radius a0, pitch b0, and N0 helical turns. This structure is
slowly loaded by an axial force F, while the ends are prevented
from rotating. In this process, the structure is transformed
into another helical structure with dual chirality HPF, with a
radius a, pitch b, and N helical turns. The director basis Di (i =
1, 2, and 3) consisting of the normal, binormal, and tangent
vectors of HPI and the director basis di of HPF are described by
their Euler angles (φ0, θ0, ψ0) and (φ, θ, ψ), respectively.27,28 We

Fig. 1 (a) A gourd tendril coil. (b) The rotation states of a gourd tendril
coil during an axial loading process.

Fig. 2 Schematic illustration of the dual-chirality nanohelices with the
rectangular cross-section HPI of (a) binormal and (c) normal nanohelices.
The configurations of the corresponding elongated nanohelix with the
dual chirality HPF of (b) binormal and (d) normal after loading by the
tensile force F along the helical axes. The corresponding cross-sections
of the whole (e) binormal and (f ) normal nanohelices with dual chirality
at the mirror symmetry axes.
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can use the mirror symmetry of these structures to our advan-
tage by modeling their response as two helical springs where
one end is free to rotate. We follow the terminology of ref. 29
and denote S to be the arc length along the fixed reference
configuration HPI and s the arc length along the deformed con-
figuration HPF. The corresponding derivatives are defined

by cð�Þ ¼ @ð�Þ=@S and ð�Þ
�
¼ @ð�Þ=@s. Based on the general elastic

rod theory, the derivation processes for the radii a0 and a,
pitches b0 and b as well as the loading force F, the torque
along the helix axis M of each helix of HPF are the same as
those of a loaded helical structure with two ends restricted
from winding,29 except that in this situation ψ̂ ≠ ψ•0 due to the
fact that N ≠ N0. Therefore, the radius and pitch are given by:

a0 ¼ sin θ0
ψ̇0

; b0 ¼ 2π cos θ0
ψ̇0

: ð1Þ

a ¼ 1
ψ̂

F
E3

cos θ þ 1
� �

� F
E1

cos θ
� �

sin θ;

b ¼ 2π
ψ̂

F
E1

sin2 θ þ F
E3

cos θ þ 1
� �

cos θ
� �

:

ð2Þ

For a helix with N helical turns of HPF, the number of turns
N is given by:30

N ¼ ψ̂

2π
l0; ð3Þ

where l0 ¼ N0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πa0Þ2 þ b02

q
is the length of the coil wire of HPI.

The balance of force and moment connect the axial force F
and axial moment M to the deformed shape of the helical
structure by the following two relations:

1
E3

� 1
E1

� �
cos θ sin θF2 þ sin θF � C ψ̂cos θ � ψ̇0cos θ0ð Þψ̂ sin θ

þ EI1 1� 1� Δð Þδi2½ � ψ̂ sin θ � ψ̇0 sin θ0ð Þψ̂ cos θ ¼ 0;

ð4Þ

M ¼EI1½1� ð1� ΔÞδi2�ðψ̂ sin θ � ψ̇0 sin θ0Þ sin θ

þ Cðψ̂ cos θ � ψ̇0 cos θ0Þ cos θ;
ð5Þ

where Δ ≡ I2/I1, i = 1 for a normal (i = 2 for a binormal) helix
and I1 = w3t/12 and I2 = wt3/12 are the moments of inertia of a
rectangular cross-section. δi2 is the Kronecker delta. E1 = KGtw,
E3 = Etw and C = 4GI1I2/(I1 + I2) according to the scaled tor-
sional stiffness.31 K is the Timoshenko shear coefficient and
related to Poisson’s ratio ν through K = (5 + 5ν)/(6 + 5ν).32

E and G = E/2(1 + ν) are the Young’s and shear moduli of the
material, respectively.33

It is of particular interest to look at the case M = 0 for a
loaded helical structure, corresponding to the case where one
end is free to rotate. From (4), we obtain

ψ̂ ¼ EI1½1� ð1� ΔÞδi2�sin θ0 sin θ þ C cos θ0 cos θ
EI1½1� ð1� ΔÞδi2�sin2 θ þ C cos2 θ

ψ̇0: ð6Þ

Fig. 2(e) and (f) are the cross-sections of the binormal and
normal helical structures with dual chirality at the mirror sym-
metry axes, respectively. The perversions before and after

loading are presented by the solid and dashed rectangles,
respectively. Φ is the rotation angle of the free end of the
helical structure, i.e., the rotation angle of perversion:

Φ ¼ 360°� ðN � N0Þ: ð7Þ
The spring constant of each helical structure of HPF is

deduced from (1)–(4), in the linear limit h = dF/d(Nb):

hS ¼ � P1P3
2ðP1P4 þ P2Þ ;

P1 ¼ 1
E3

� 1
E1

� �
sin θ � cos2 θ

sin θ

� �
F2 � cos θ

sin θ
F þ Q6

2cos θ
sin θ � cos2 θ

sin θ

� �
ψ̂2

þ 2sin θ
Q6ðQ4Q5 þ Q3Q6Þ

Q4
2 � Q3

sin θ

� �
ψ̇0ψ̂

þ sin θ
Q5ðQ4Q5 þ Q3Q6Þ

Q4
2 ψ̇0

2; P2 ¼ Q2 sin θ; P3 ¼ 1
Q2l0

;

P4 ¼ �Q1

Q2
;

where,

Q1 ¼ 1
E3

� 1
E1

� �
cos2 θ þ 1

E1
;

Q2 ¼ 2
1
E3

� 1
E1

� �
F cos θ þ 1;

Q3 ¼EI1½1� ð1� ΔÞδi2� sin θ0 sin θ þ C cos θ0 cos θ;

Q4 ¼EI1½1� ð1� ΔÞδi2�sin2 θ þ C cos2 θ;

Q5 ¼ � EI1½1� ð1� ΔÞδi2�sin θ0
cos θ
sin θ

þ C cos θ0;

Q6 ¼ 2ðEI1½1� ð1� ΔÞδi2� � CÞcos θ:

ð8Þ

Since the two opposite-handed helical structures of HPF are
connected in series, the spring constant of HPF is:

hP ¼ hS
2
: ð9Þ

Using (1)–(9), we can obtain the radius a, pitch b, N helical
turns and the spring constant hP of the helical structure with
dual chirality HPF from the known radius a0, pitch b0, the
number of turns in each helix N0 of HPI and the loading force F.

Results

In order to understand the mechanical behavior of nanohe-
lices with dual chirality, we analyze a rolled-up nanohelix. The
strain-induced self-scrolling mechanism is a highly controlla-
ble fabrication method that allows to create dual-chirality
nanohelices with adjustable helix angles. Fig. 3(a) shows that a
binormal dual-chirality nanohelix is fabricated from the sym-
metric V-shaped SiGe/Si/Cr nanobelt, which leads to a left and
right-handed arm having the same geometry parameters. The
8/10 nm thick SiGe/Si hetero-structures with approximately
40% Ge in the SiGe layer were epi-grown by chemical vapor
deposition (CVD) on the Si(110) substrates. The 13 nm thick
amorphous Cr layers were deposited by e-beam evaporation.
The details of the SiGe/Si/Cr pattern fabrication and the wet
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chemical etching for the subsequent underetching are
described elsewhere.22,34 The binormal nanohelix with dual
chirality has a radius a0 = 1.18μm, pitch b0 = 4.47μm and N0 = 6.
The insets present the V-shaped mesa designs of 60°, as
well as the rolling direction of the helix as indicated with a
white arrow. In the following calculations, we use the para-
meters of this fabricated SiGe/Si/Cr nanohelix, including the
area of the cross-section, the radius, the pitch, the number of
turns, and the material parameters. (As presented in ESI
Fig. S1,† we provide another SiGe/Si/Cr binormal dual-chirality
nanohelix as an example to quantitatively analyse the mechan-
ical properties of rotation.)

By pulling both ends of a nanohelix with dual chirality, the
central part of the perversion performs a rotary motion,16,23

which makes it a perfect material for a linear-to-rotary motion
nanometer converter. Fig. 3(b) presents the rotation angle of
perversion versus the axial elongation for the fabricated binor-
mal SiGe/Si/Cr nanohelix with a red curve. The modeling
results are deduced from (1)–(6) with the geometry parameters
as well as the material parameters of ESiGe = 161.2 GPa, νSiGe =
0.27,34 ESi = 168.9 GPa, νSi = 0.36,35,36 and ECr = 377 GPa, vCr =
0.31.37 The SiGe/Si/Cr binormal nanohelix unwinds while
extending axially and rotates 358°, ca. 1 turn, when it is
stretched to 160% of its original length. The unwinding
rotation direction of this binormal nanohelix is marked with
red arrows in Fig. 2(b) and (e). Remarkably, during the first
turn, the rotation angle and the axial elongation are very close
to a linear relation and the corresponding linear-to-rotary ratio
is approximately 597° per unit length. This kind of linear
rotation has been observed in a loading experiment of the
SiGe/Si nanohelix.23 As shown in Fig. 3(b), we also study the
linear-to-rotary motion of a normal dual-chirality helical nano-

helix with the same parameters as those of the binormal SiGe/
Si/Cr nanohelix. It is interesting to compare the binormal and
normal nanohelices. The normal helix overwinds in the
reverse direction and has a larger amplitude of rotation: it
overwinds to 1116°, i.e. 3.1 turns, when the elongation reaches
60% (see Fig. 2(d) and (f)). It is notable that the normal helix
deviates from the linear behavior in the elastic regime by only
10%. Therefore, the binormal nanohelices with dual chirality
are a more appropriate choice for a linear-to-rotary motion
nanometer converter in 3-D scanning probe microscopes or
microgoniometers.

Fig. 3(c) illustrates the axial load versus elongation of the
SiGe/Si/Cr binormal nanohelix with dual chirality and the
corresponding normal helix in the region of 60% elongation,
using (1)–(6). All the loading forces of binormal/normal nano-
helices are divided by their respective maximum loading force
in this region. We observe that the binormal nanohelix with
dual chirality is stretched linearly with the loading force,
unlike the normal helix.

We further describe in Fig. 3(d) how the spring constant
depends on the elongation for both the SiGe/Si/Cr binormal
and normal nanohelices with dual chirality in the region of
60% elongation, obtained using (7) and (8). The spring con-
stant of the binormal nanohelix remains constant with a value
of 0.012 N m−1, which will facilitate the actuation of the
motion converters. A spring constant of the same magnitude
of order as 0.012 N m−1 has been measured in a SiGe/Si nano-
helix.23 In contrast, the normal nanohelix has a wide spring
constant change from 0.014 N m−1 to 0.379 N m−1, increasing
27 times under load. Therefore, we conclude that binormal
nanohelices with dual chirality are more appropriate for high-
resolution force measurement in nanoelectromechanical
systems.

Since normal and binormal helices exhibit opposite rotary
motions, what is the behavior of a transversely isotropic rod
(created with a square or circular section)? Fig. 4(a) presents
the rotation angle Φ of perversion versus the axial elongation
for a transversely isotropic dual-chirality nanohelix with a
square cross-section, derived from (1)–(7). In the loading
process, the dual-chirality nanohelix with a square cross-
section exhibits the rotational inversion: it first overwinds to
18°, i.e. 0.05 turns, when the elongation increases to 22%;
then unwinds to 73°, i.e. 0.2 turns, when the elongation
increases to 60% as shown in Fig. 4. Therefore, the rotation
property of transversely isotropic dual-chirality nanohelices is
displayed in different stages with different axial loads.
Interestingly, this rotational inversion is similar to the one we
observed in some gourd and cucumber tendrils (Fig. 1(b)). We
note that all transversely isotropic rods will behave, as expected
from the general theory and illustrated for a fabricated SiGe/Si/
Cr nanohelix transforms with a circular cross-section (inset of
Fig. 4(a)).

We further identify the range of the aspect ratio of the rect-
angular cross-section η = w/t for the nanohelices with dual
chirality that acquires the characteristic of rotational inversion.
Fig. 4(c) shows how the rotation direction of perversion

Fig. 3 (a) SEM image of a binormal SiGe/Si/Cr dual-chirality helical
nanohelix formed by a symmetric V-shaped mesa with both ends fixed
to the Si(110) substrate. The inset shows the mesa design and the rolling
direction of the helix as indicated with a hollow arrow. (b) Rotation angle
of perversion, (c) axial load, and (d) spring constant versus axial elonga-
tion of the fabricated binormal nanohelix as well as a normal one with
the same parameters.
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depends on η during the axial loading, based on (1)–(6). The
dashed line of η = 1 represents the dual-chirality nanohelix
with a square cross-section. The areas above and below the
dashed line indicate the binormal and normal helical nano-
helices with dual chirality, respectively. We note that the
rotational inversion of overwinding followed by unwinding
only happens in a very narrow region of 1 < η < 1.35 for the
binormal nanohelix with dual chirality and 1 < η < 1.6 for the
normal one.

Fig. 5 illustrates the rotation angle versus the elongation for
1 ≤ η ≤ 50. The area between the two red dotted dashed curves
of η = 1.35 and η = 1.6 is the region of rotational inversion as
shown in Fig. 5(b); while the rest is the region of unidirectional
rotation. A binormal dual-chirality nanohelix with η ≥ 1.35 or a
normal one with η ≥ 1.6 will only unwind or wind, respectively,
during the whole loading process. According to the colourmap,

the uni-directional rotational behavior of perversion is affected
significantly by the aspect ratio η when it is smaller than 10:
for an elongation of 60%, the rotation angle varies from 186°
to 352° with η increasing from 1.35 to 10 (binormal), and from
198° to 1049° with η increasing from 1.6 to 10 (normal).
However, when the value of η exceeds 10, the relationship
between the elongation and the rotation angle is close to
linear for the binormal nanohelices with dual chirality. We see
from this analysis that both direction and amplitude of
rotation can be finely adjusted by changing the shape of the
cross-section for a dual-chirality helical micro-/nano-structure
made out of the determined material.

Conclusions

We have shed light on the important mechanical properties of
helical nanostructures with dual chirality by using a general
elastic rod theory that include bending, torsion, twist, exten-
sion, and shear. Our model was used to analyze the behavior
of a SiGe/Si/Cr dual-chirality nanohelix. It reveals that the
transversely isotropic nanohelix always overwinds initially in
axial extension, and then unwinds for larger tension. We also
observe that this kind of rotational inversion exists in some
gourd and cucumber tendrils. Importantly, we find that a
rotational inversion region defined by the aspect ratio of rect-
angular cross-sections η is given by: 1 < η < 1.35 and 1 < η < 1.6
for binormal and normal nanohelices with dual chirality,
respectively. Beyond this narrow region, the binormal and
normal nanohelices with dual chirality only unwind and over-
wind, respectively. It is found that for the normal dual chirality
nanohelices, the rotation angle of perversion, the loading force
and spring constant all increase substantially and nonlinearly
with extension; while binormal dual chirality nanohelices with
η > 10 rotate and stretch both linearly with loading force, and a
spring constant for η = 50 as small as 0.012 N m−1. Therefore,
these remarkable mechanical properties suggest that binormal
nanohelices with dual chirality would be excellent linear-to-rotary
motion converters. This work provides a theoretical framework
for further experimental investigation on helical structures with
dual chirality, as well as their applications in novel helical devices
and micro-/nano-electromechanical systems.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China under Grant No. 11547042, 11274230,
11574206, 11474201 and 11674225. L. Z. thanks the
financial support, by the Early Career Scheme (ECS) with the
Project No. 439113, from the Research Grants Council (RGC)
of Hong Kong SAR, and the Science, Technology and
Innovation Committee of Shenzhen Municipality (SZSTI)

Fig. 4 (a) Rotation angle Φ of perversion versus axial elongation of the
transversely isotropic dual-chirality nanohelices with square and circle
cross-sections. (b) The rotational inversion process of a transversely iso-
tropic dual-chirality nanohelix with the square cross-section, as well as
its cross-section at the mirror symmetry axis. (c) The rotational inversion
region defined by the aspect ratio of the rectangular cross-section η.

Fig. 5 Rotation angle perversion versus elongation for 1 ≤ η ≤ 50.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2018 Nanoscale, 2018, 10, 6343–6348 | 6347



Fundamental Research and Discipline Layout project (No.
JCYJ20170413152640731). We thank Qianqian Wang (The
Chinese University of Hong Kong) for simulated three-dimen-
sional helices.

References

1 P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy,
D. Chatenay and F. Caron, Science, 1996, 271, 792–794.

2 B. L. Feringa and R. A. Delden, Angew. Chem., Int. Ed.,
1999, 38, 3418–3438.

3 R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier,
H. A. Stone and J. Bibette, Nature, 2005, 437, 862–865.

4 M. G. L. van den Heuvel and C. Dekker, Science, 2007, 317,
333–336.

5 L. Zhang, J. J. Abbott, L. X. Dong, K. E. Peyer,
B. E. Kratochvil, H. X. Zhang, C. Bergeles and B. J. Nelson,
Nano Lett., 2009, 9, 3663–3667.

6 S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. F. Obregón
and B. J. Nelson, Adv. Mater., 2012, 24, 811–816.

7 S. Tottori, L. Zhang, K. E. Peyer and B. J. Nelson, Nano Lett.,
2013, 13, 4263–4268.

8 F. M. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona
and B. J. Nelson, Adv. Funct. Mater., 2015, 25, 1666–1671.

9 T. McMillen and A. Goriely, J. Nonlinear Sci., 2002, 12, 241–
281.

10 J. B. Listing, Vorstudien über topologie, Göttinger Studien,
1847, vol. I, pp. 811–875.

11 A. P. Candolle, Organographie végétale, Chez Deterville,
Paris, 1827.

12 A. P. Candolle, Physiologie végétale, Béchet Jeune, Paris, 1832.
13 Ch. Darwin, The movements and habits of climbing plants,

John Murray, London, 1865.
14 A. Goriely, The mathematics and mechanics of biological

growth, Springer, New York, 2017.
15 A. Goriely and M. Tabor, Phys. Rev. Lett., 1998, 80, 1564–1567.
16 S. J. Gerbode, J. R. Puzey, A. G. McCormick and

L. Mahadevan, Science, 2012, 337, 1087–1091.
17 J. Gore, Z. Bryant, M. Nollmann, M. U. Le, N. R. Cozzarelli

and C. Bustamante, Nature, 2006, 442, 836–839.

18 T. Lionnet, S. Joubaud, R. Lavery, D. Bensimon and
V. Croquette, Phys. Rev. Lett., 2006, 96, 178102.

19 J. W. Miller, Phys. Rev., 1902, 14, 129–148.
20 B. Durickovic, A. Goriely and J. H. Maddocks, Phys. Rev.

Lett., 2013, 111, 108103.
21 A. Goriely and P. Shipman, Phys. Rev. E: Stat. Phys.,

Plasmas, Fluids, Relat. Interdiscip. Top., 2000, 61, 4508–
4517.

22 L. Zhang, E. Deckhardt, A. Weber, C. Schonenberger and
D. Grutzmacher, Nanotechnology, 2005, 16, 655–663.

23 L. X. Dong, L. Zhang, B. E. Kratochvil, K. Shou and
B. J. Nelson, J. Microelectromech. Syst., 2009, 18, 1047–
1053.

24 T. Y. Huang, M. S. Sakar, A. Mao, A. J. Petruska, F. Qiu,
X. B. Chen, S. Kennedy, D. Mooney and B. J. Nelson, Adv.
Mater., 2015, 27, 6644–6650.

25 M. H. Godinho, J. P. Canejo, G. Feioa and E. M. Terentjev,
Soft Matter, 2010, 6, 5965–5970.

26 J. P. Canejo and M. H. Godinho, Materials, 2013, 6, 1377–
1390.

27 A. Goriely and M. Tabor, Physica D, 1997, 160, 22–44.
28 A. B. Whitman and C. N. Desilva, J. Elasticity, 1974, 4, 265–

280.
29 L. Dai, L. Zhang, L. X. Dong, W. Z. Shen, X. B. Zhang,

Z. Z. Ye and B. J. Nelson, Nanoscale, 2011, 3, 4301–4306.
30 A. Goriely and M. Tabor, Proc. R. Soc. London, Ser. A, 1997,

453, 2583–2601.
31 Z. C. Zhou, P. Y. Lai and B. Joos, Phys. Rev. E: Stat. Phys.,

Plasmas, Fluids, Relat. Interdiscip. Top., 2005, 71, 052801.
32 W. A. Fate, J. Appl. Phys., 1975, 46, 2375–2377.
33 S. P. Timoshenko and J. M. Gere, Mechanics of Materials,

Van Nostrand, Princeton, 1972.
34 L. Zhang, E. Ruh, D. Grutzmacher, L. X. Dong, D. J. Bell,

B. J. Nelson and C. Schonenberger, Nano Lett., 2006, 6,
1311–1317.

35 X. L. Li, J. Phys. D: Appl. Phys., 2008, 41, 193001.
36 J. J. Wortman and R. A. Evans, J. Appl. Phys., 1965, 36, 153–

156.
37 S. V. Golod, V. Ya. Prinz, P. Wägli, L. Zhang, O. Kirfel,

E. Deckhardt, F. Glaus, C. David and D. Grützmacher, Appl.
Phys. Lett., 2004, 84, 3391–3393.

Paper Nanoscale

6348 | Nanoscale, 2018, 10, 6343–6348 This journal is © The Royal Society of Chemistry 2018


	Button 1: 


