High-efficiency n-type silicon PERT bifacial solar cells with selective emitters and poly-Si based passivating contacts

Don Dinga, Guilin Lub,b, Zhengping Lia, Yueheng Zhanga, Wenzhong Shenb,c,c,*

a Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, PR China
b Lu’an Photovoltaics Technology Co., Ltd, Shanxi 046000, PR China
c Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, PR China

\begin{abstract}
Bifacial crystalline silicon (c-Si) solar cells have currently attracted much attention due to the front high-efficiency and additional gain of power generation from the back side. Here, we have presented n-type passivated emitter and rear totally-diffused (n-PERT) bifacial c-Si solar cells featuring front selective emitter (SE) and polysilicon (poly-Si) based passivating contacts. The SE formation was scanned with laser doping based on front boron-diffusion p+ emitter. The poly-Si based passivating contacts consisting of nano-layer SiO\textsubscript{x} of \textasciitilde1.5 nm thickness grown with cost-effective nitric acid oxidation and phosphorus-doped polysilicon exhibited excellent passivation for high open-circuit voltage. We have successfully achieved the large-area (156 \times 156 mm2) n-PERT bifacial solar cells yielding top efficiency of 21.15\%, together with a promising short-circuit current density of 40.40 mA/cm2. Theoretical calculation has further demonstrated that the optimal thickness of SiO\textsubscript{x} nano-layer will increase from 1.5 nm to 1.8 nm if the density of interface defect state decreases by one magnitude from \textasciitilde1 \times 1019 cm-2/eV, and the cell efficiency can be improved up to 24.64\% with open-circuit voltage over 0.720 V by optimizing the parameters of functional materials and interface layers. The present work has indicated that the commercialization of low-cost and high-efficiency n-PERT bifacial c-Si cells is possible due to the processes compatible with existing production lines.
\end{abstract}

\begin{keyword}
c-Si solar cells\hfill n-PERT bifacial\hfill Poly-Si based passivating contacts\hfill Nano-layer SiO\textsubscript{x}\hfill Selective emitter
\end{keyword}

1. Introduction

Crystalline silicon (c-Si) based photovoltaic industry plays a more significant role in renewable energy sources field year by year, where high performance n-type passivated emitter and rear totally-diffused (PERT) bifacial c-Si solar cells have been recently identified as a promising candidate. This is due to their ability to eliminate the light-induced degradation caused by boron-oxygen complexes (Glunz et al., 2001), which is a severe problem in p-type c-Si solar cell counterparts (Rudolph et al., 2016; Fichtner et al., 2018), and to exhibit a lower sensitivity to metal impurities contamination such as Fe, Cr, Co, W, Cu, Ni, etc (Scht et al., 2007). More important is that the bifacial device formed through a so-called “H-pattern” grid (namely a substitute for the conventional full area Al print of monofacial counterpart) has capacity of providing additional power generation gain of 10–30\% from the rear side (Fertig et al., 2016). The bifacial solar cell structure, combined with the double glass module technology, is a perfect match with the current industrial process for a better long-term reliability at a low cost.

The n-PERT solar cell conception was first proposed by Zhao et al. (2002), at UNSW in Australia (cell size 4 cm2). In recent years, many laboratories and research institutions have made satisfactory progress in the exploitation of n-PERT+ bifacial c-Si solar cells, e.g., co-diffusion or co-annealing to decrease the number of high temperature steps of standard process (Blevin et al., 2014; Lanterne et al., 2015), ion implantation or plasma immersion ion implantation of p+ emitters (Lanterne et al., 2014; Kiefer et al., 2016; Lerat et al., 2016), selective oxidation etch-back to remove dead layer and reduce contact-resistance (Du et al., 2017; Buchholz et al., 2017), as well as chemical rounding technology and SiO\textsubscript{x}/Al\textsubscript{2}O\textsubscript{3}/SiN\textsubscript{x} stacks to enhance antireflection and passivation performance (Song et al., 2018; Huang et al., 2018). We have recently presented simplified industrial processes to fabricate high performance n-PERT bifacial solar cells by using boron tribromide (BBr\textsubscript{3}) diffusion emitter and phosphorus (P) ion-implanted back surface field (BSF) in conjunction with screen printed contacts (Lu et al., 2017).
IMEC in Belgium has achieved the front average (44 cells) efficiency η of 22.4% with Ni/Ag co-plated contacts on both sides of large solar cells (size 239 cm²) (Tous et al., 2017). The bifacial n-PERT solar cells are now mass-produced in Chinese photovoltaic companies of Yingli, Shanghai Shenzhou, Jolywood and Linyang with the front efficiency over 21% and bifaciality factor of 80–85% (size 6 in).

However, the conventional n-PERT solar cells still face an improved bottleneck of cell efficiency which mainly lies in the carrier recombination loss at the metal/semiconductor Schottky contacts (Edler et al., 2015; Roemer et al., 2014; Cuevas et al., 2014). It is clearly desirable to expand the excellent passivation already demonstrated on c-Si surfaces to underneath the metal. Hydrogenated amorphous silicon (a-Si:H) or poly-Si based passivating contacts structure based on “selective blocking effect” (i.e., selectively blocking one carrier type while efficiently transporting the other carrier type) are both the effective ways to provide passivated contacts (Tanaka et al., 1992; Adachi et al., 2015; Yoshikawa et al., 2017; Feldmann et al., 2014a; Richter et al., 2015, 2017; Stodolny et al., 2016; Rienacker et al., 2017). Compared with a-Si:H heterojunction (deposition temperature is ~250°C), the poly-Si based passivating contacts not only have recently attracted attention for their low recombination current densities (< 10 fA/cm²) with main advantages for next generation c-Si based photovoltaic technology. Nevertheless, one of the main challenges of c-Si solar cells with this composite structure lies in the formation and integration of nano-scale SiOx dielectric layer on routine large-area wafers. Existing studies have proved that if the quality of silicon oxide is not good, the electrical performance of the solar cells will be greatly reduced (Feldmann et al., 2018a, 2018b). In this work, we have demonstrated the prospective n-PERT bifacial c-Si solar cells featuring rear poly-Si based passivating contacts, together with front laser doping selective emitter (SE). The laser doping was performed to reduce carrier recombination on front borosilicate glass (BSG) surface based on conventional B-diffusion p+++ emitter for the sheet resistance of 110 Ω/□ (without low pressure diffusion equipment to form high sheet resistance, such as more than 130 Ω/□). Using the cost-effective nitric acid oxidation (while thermal oxidation requires specialized high-cost equipment), we have successfully grown nanolayer (~1.5 nm) SiOx on large-area Si wafers with good uniformity and densification. After proper edge isolation and high temperature annealing, the properties of front and back configurations of the solar cells were able to be optimized simultaneously (without interfering with each other). The high performance large-area (156 × 156 mm²) n-PERT bifacial c-Si solar cells with poly-Si based passivating contacts have been finally achieved in the process technologies compatible with current industrial production lines with the champion efficiency of 21.15%. Theoretical calculation with AFORS-HET (Automat FOR Simulation of HETerostructures) v2.5 agrees well with the experiment data, where an effectively way has been found to increase the cell efficiency of reaching up to 24.64%.

2. Experimental and simulation details

As starting materials, we employed commercial-grade n-type pseudo-square (156 × 156 mm²) (1 0 0)-oriented Czochralski (Cz) c-Si wafers with an average thickness of 180 μm and resistivity of 0.5–3.0 Ω·cm. Fig. 1(a) and (b) shows the schematic structure and main production process, respectively, used in this study to demonstrate the applicability of laser doping SE and poly-Si based passivating contacts to high-efficiency n-PERT bifacial c-Si solar cells.

2.1. Fabrication of n-PERT bifacial solar cells with front SE structure (the rear side was replaced by BSF)

For n-PERT bifacial solar cells with only SE structure (cell schematic is omitted for clarity), firstly, the damage on both surfaces induced by wire-cutting was etched of ~10 μm per side in NaOH solution (10% by volume) and then a-Si:H layer was deposited by plasma-enhanced chemical vapor deposition (PECVD) process. Then, the native SiOx (θ = 1–1.5 nm) nanolayer was grown on the back surface to achieve high sheet resistance, such as more than 130 Ω/□ by thermal oxidation. After that, the solar cells were processed into n-type poly-Si based passivating contacts and back surface field (BSF) structure.
volume) at 80 °C. After that, a wet-chemical process with alkaline solution was applied to create the random pyramids surface texture, followed by a standard wet-chemical cleaning sequence of RCA 1 and 2. All the samples needed to undergo BBr₃ diffusion back to back via a conventional high-temperature tube furnace (E2000 HT 300-5, Centrotherm, Germany), where only the outside of the wafers could be effectively diffused. The p^+ emitter with sheet resistance of ~110 Ω/\square and junction depth of ~0.7 μm was then formed.

The front surface was subsequently subjected to local heavy doping with nanosecond pulse laser for the wavelength of 532 nm and pulse energy in the range of 80–300 μJ (TPC/TSC series, Tsme, China), resulting in rapid B ions-propulsion from the BSG layer into p^+ emitter and forming the p^{++} emitter. Note that the laser scanning lines location corresponded to the fine screen-printed grid lines. The line width of laser scanning (~160 μm) was required to exceed that of screen printing (~50 μm) for the purpose of reducing the difficulty of electrode alignment as well as improving the efficiency in printing. Afterward residue BSG layer was removed using diluted hydrofluoric acid solution (5% by volume), followed by the plasma edge isolation and rear polishing treatment with a mixture of hydrofluoric acid and nitric acid solution.

For the quasi-planar back side, p ions were implanted with an acceleration voltage of 15 keV and a dose of $3.2 \times 10^{15} \text{ cm}^{-2}$ (IonSolar™, Kingstonesemi, China). And then, conventional oxidation process (800 °C, 30 min) was employed to activate dopants for the formation of n^+ BSF with the junction depth of 0.85 μm, sheet resistance of 37 Ω/\square and surface concentration of ~2.19 × 10²⁰ cm⁻³. Hydrogenated silicon nitride SiNx:H (fixed thickness of 75 nm) antirefective coatings were deposited on both sides by PECVD (SINA XS, Roth & Rau, Germany). Finally, the front Ag/Al and rear Ag electrode grids were guaranteed by screen-printed metallization (LTCC, Baccini, Italy), together with a co-firing in an infrared belt-furnace (CFD-9024, Dispatch, USA).

2.2. Fabrication of n-PERT bifacial solar cells with rear poly-Si based passivating contacts (no SE structure in the front side)

The n-PERT bifacial c-Si solar cells with only poly-Si based passivating contacts were fabricated from the same Si materials (cell schematic is omitted for clarity). For the front side, conventional BBr₃ diffusion with high-temperature tube furnace was employed to prepare p^+ emitter after damage etching, alkaline texturing and RCA clean. The specific operation process was consistent with the previous part, but laser doping SE was not introduced here. For the polished back side, ultra-thin SiOₓ layer was grown in boiled 68 wt% nitric acid at 80 °C for 20 min, then covered by poly-Si layer crystallized from 90 nm thick P-doped a-Si:H layer using a parallel-plate PECVD with deposition temperature of 250 °C (Pine-m-R-5, Ideal Energy, China) and annealing treatment. Note that the final thickness of n^+ ploy-Si was thinner than 90 nm after moving phosphosilicate glass (PSG). The number of wafers in each tray was fixed at 50. Subsequent steps such as the deposition of SiNx:H (fixed thickness of 75 nm) antireflective coatings on both sides, front Ag/Al and rear Ag contact electrodes were also done to form a complete bifacial c-Si solar cell.

2.3. Fabrication of n-PERT bifacial solar cells with both SE and poly-Si based passivating contacts

The complete n-PERT bifacial c-Si solar cells with both SE and poly-Si based passivating contacts were also manufactured to minimize the carrier recombination loss and improve the interface passivation (see Fig. 1(a) and (b)). Briefly, the front surface was first doped with boron through high-temperature tube furnace to form p^+ emitter, and laser doping was subsequently employed to generate p^{++} SE through pushing B-ions from BSG into Si layer. Then nitric acid oxidation and PECVD were used to produce ultra-thin SiOₓ layer and as-deposited a-Si:H layer at the back side. A high-temperature P-diffusion and annealing treatment should be adopted to facilitate the crystallization from a-Si:H into n^+ poly-Si. Finally, we deposited SiNx:H antireflective coatings on both surfaces, Ag/Al and Ag contact electrodes on front and back surfaces, respectively. The detailed production process of each step had been mentioned above.

2.4. Characterization

The thickness and refractive index of SiNx:H and SiOₓ layers were extracted from spectroscopic ellipsometry (400 adv-PV, Sentech, Germany). The doping profiles in p^++ SE and n^+ poly-Si based passivating contacts were measured by electrochemical capacitance-voltage (ECV) profiling (CVP21, WEP, Germany), and the sheet resistance were determined by 4-point probes (2801 Series, Four Dimensions Inc., USA). The external quantum efficiency (EQE) was received on the platform of quantum efficiency measurement (QEX10, PV Measurements, USA). The implied open-circuit voltage (implied-V_OC) and effective minority carrier lifetime (τ_{eff}) of the cell precursors were obtained by quasi-steady-state photo-conductance (QSSPC) method (WCT-120, Sinton Instruments, USA) in the transient or generalized mode. The electrical properties (V_{OC}, short-circuit current J_{SC}, fill factor FF, and energy conversion efficiency η) of n-PERT bifacial c-Si solar cells were measured under standard test condition with a steady-state solar cell I-V tester (Industrial Vision Technology, VS-6820) equipped with a class AAA solar simulator.

AFORS-HET v2.5 developed by Helmholtz-Zentrum Berlin is a very powerful and professional numerical simulation tool for the heterojunction c-Si solar cells (e.g., poly-Si based passivating contacts solar cell is also a heterojunction). On the one hand, carrier transport route of solar cell with poly-Si based passivating contacts has one-dimensional characteristic which is perfectly matched with AFORS-HET software. On the other hand, carrier transportation through SiOₓ dielectric layer can be described herein by two mechanisms: the thermoionic-emission and thermionic field model, as well as the hetero-interface quantum tunneling model. The SiNx:H/c-Si(n^+) and SiNx:H/poly-Si(n^+) stacks were modelled as MS-Schottky contacts, together with flat band of metal work function being set in the front contact boundary. We emphasized further that the input parameters of the optical and electrical layers were from the experimental data or default value in the software, including the available c-Si wafer thickness of ~160 nm, n-type bulk resistivity of ~1.5 Ω cm, p^+ emitter with the peak substitutional dopant concentration of 2 × 10¹⁹ cm⁻³ and junction depth of ~0.7 μm, as well as refractive index (n) and extinction coefficient (k) of c-Si and SiNx:H materials. The generation of electron/ hole pairs can be described by taking Lambert-Beer absorption into account. Note that the bandgap narrowing effect had already been considered in this calculation mode. The specific solar cell parameters used in AFORS-HET simulation are shown in Table 1, where d is the thickness, SRV the surface recombination velocity, N_{acc} the acceptor concentration, N_{d} and N_{a}, both the donor concentration, N_{b} the density of bulk defect state, D_{t} the density of interface defect state, Chi the electron affinity energy, E_b the band gap, d_S the relative dielectric constant, m_e and m_h the effective mass factor for tunneling of electron and hole, respectively, D_{ph} the pinhole density through the insulator layer (dimensionless unit), and w/o means without.

3. Results and discussion

3.1. Influence of front laser doping SE on cell performance

As we know is that carrier recombination in doped regions of a solar cell places a major limit on its performance. The front emitters doped heavily under metal contacts can offer a route toward lower recombination and higher efficiency via low resistivity Ohmic contact
melting Si substrate under laser irradiation (Jaeger et al., 2011). That plenty of B-ions were pushed deeper from the surface of localized laser doping were lower than that without laser doping. The reason is the junction was pushed. Moreover, all the surface concentrations with annealing treatment. The ever-increasing laser energy of 80–2.90 × 1019 cm−2/eV of ~0.51 × 1020 cm−2/eV.

The surface concentration of ~0.51 × 1020 cm−2/eV. The laser energy of groups G1-G3 gradually increased in the range of 80–130 μJ, while group G0 corresponded to the reference group without laser doping. The SE regions of groups G1 and G3 exhibited the surface concentration of ~0.51 × 1020 cm−2/eV and the h of ~0.77 μm. Obviously, the higher the laser energy, the deeper the p-n junction was pushed. Moreover, all the surface concentrations with laser doping were lower than that without laser doping. The reason is that plenty of B-ions were pushed deeper from the surface of localized melting Si substrate under laser irradiation (Jaeger et al., 2011).

We have evaluated the influence of laser treatment on the performance of n-PERT bifacial c-Si solar cells. Fig. 3(a-d) illustrated the electrical parameters (Voc, Jsc, FF, and η) of solar cells with only front SE (no poly-Si based passivating contacts in the back side) versus groups G0-G3. The single-sided testing method was adopted to measure the front electrical performance of solar cells (i.e., contacting the front main grids of solar cells with metal probes, while the back side was contacted using light-proof metal table), therefore the effect of back lighting on the whole cells was excluded. Fig. 3(a) showed that the average Voc of group G2 for ~0.645 V was higher than that of groups G1 and G3, demonstrating a best selection for right power laser. The group G2 had the optimal average Jsc of 39.2 mA/cm2 seen in Fig. 3(b).

For the lower laser energy, the built-in voltage is relatively weak compared with group G2 due to shallower laser-doped emitter, while the higher laser energy density disturbs silicon surface because of the ablation of silicon and increases the surface recombination after laser scanning. Moreover, thermal damage will be introduced into space charge region for higher laser, leading to the enhancement of recombination current in the space charge region (Hopman et al., 2009; Li et al., 2013). Improper laser doping would also increase the contact resistance of Ag/Al paste/p+ emitter stack by changing the surface doping concentration, resulting in a lower FF value shown in Fig. 3(c). Fig. 3(d) finally illustrated that group G2 created the best solar cells with the average η of 20.15% and the top η of 20.3%.

In order to analyze the effect of different laser doping irradiations on properties of emitter area, we have further presented in Fig. 3(e) the EQE and reflectance (R) in conventional n-PERT bifacial solar cells.
indicating that the realization of higher utilization rate of front emitter curves exhibited that both facial c-Si solar cells after laser scanning. (e) Measured side of the solar cells was set to conventional only re 300 sivating contacts) versus these laser energies for the wavelength of exceeding 60% in the short wavelength of 300 – 1100 nm. It can be seen that only group G2 contributed the EQE of exceeding 60% in the short wavelength of 300 – 350 nm (see Fig. 3(f)), indicating that the realization of higher utilization rate of front emitter on photons of sunlight with G2 treatment (group G2 produced the surface concentration of ~1.02 × 10^{19} cm^{-3} and the h of ~1.12 μm as shown in Fig. 2(d)). The influence of laser scanning on solar cell is not only reflected in dopant profiles, but also in front emitter and its passivation. Another important function of laser doping is to reduce the Auger recombination due to lower level emitter sheet resistance after laser scanning in light trapping spectral region. The same conclusion was drawn from the q observation in Fig. 3(d). In addition, groups G1-G3 exhibited the better EQE compared to group G0 in the middle-long wavelength of 600–1000 nm. This may be due to the fact that the micrometer-level pyramids can be converted to nanometer-level after laser scanning, leading to a lower reflectivity and therefore higher photon absorption.

3.2. Influence of rear poly-Si based passivating contacts on cell performance

Fig. 4(a) sketched the band diagram of poly-Si(n−)/SiOx/c-Si(n) structure in thermal equilibrium. The P-doped poly-Si layer was separated from c-Si substrate by an SiOx nano-layer which has the capacity of reducing interface carrier recombination and preventing epitaxial regrowth of the as-deposited a-Si:H layer during high-temperature anneal. We have theoretically analyzed n-PERT bifacial c-Si solar cells with or without SiOx (band gap E_{g} of 8.9 eV) to assess the importance of this ultra-thin insulating layer, as shown in Fig. 4(b). The density of interface defect state D_{i} for solar cells with tunnel oxide layer was set for 1 × 10^{15} cm^{-2}/eV (see in Table 1), while D_{i} of 3 × 10^{11} cm^{-2}/eV for solar cells without tunnel oxide layer. The current-voltage (J-V) curves exhibited that both J_{SC} and V_{OC} of solar cell with SiOx were higher than those of solar cell without SiOx (the J_{SC} was 1.34 mA/cm^{2} higher, and V_{OC} 28 mV higher), supporting excellent carrier tunneling function and rear passivation quality. Existing results also suggested that this heterojunction structure with carrier selectivity can not only improve the blue response compared to a-Si/c-Si heterojunction, but also avoid the negative effects of high doping which are the causes of the intrinsically higher losses for conventional homojunction technology (Ghannam et al., 2013). The band gap E_{g} of SiOx varies with the degree of oxidation. Fig. 4(c) presented the comparison of J-V curves for SiOx materials with different E_{g} values. It can be seen that the tendency to reduce V_{OC} was getting faster as E_{g} decreased, while J_{SC} remained constant. We have therefore drawn the conclusion that the difference of oxygen content in SiOx affects the interface passivation.

A high-temperature treatment should be adopted to facilitate the crystallization of as-deposited a-Si:H layer and to reduce the contact resistance between the metal electrode and doped Si. The annealing needed to be controlled to maintain the oxide’s integrity and abrupt junction (i.e., dopant diffusion from poly-Si into c-Si layer should be prevented or limited to a tolerable level), as well as the activation of P-ions. In the experiment, we employed six annealing temperature/time sets: 890 °C/20 min (A-1), 910 °C/20 min (A-2), 930 °C/20 min (A-3), 890 °C/30 min (A-4), 910 °C/30 min (A-5) and 930 °C/30 min (A-6). Fig. 4(d) and (e) illustrated the corresponding implied open-circuit voltage (implied-V_{OC} and τ_{eff}) of the solar cell’s precursor (non-metalization for the solar cell structure with conventional p−− emitter without laser doping selective emitter). We can observe that increasing the annealing temperature from 890 °C to 930 °C would improve the implied-V_{OC} at first for fixed annealing time of 30 min, and then the increasing trend becomes slower (a similar variation was also observed.
in τ_{th}, which was in keeping with the $J-V$ curves for various E_a values in Fig. 4(c). At the same time, the effect of annealing temperature was found to be greater than that of annealing time. We finally achieved the average implied-V_{OC} of over 0.670 V and average τ_{th} of over 275 μs except group A-4.

As we know, when nitric acid or ozone-based oxidation is carried out on the back surface of Si substrate, oxygen atoms can fully contact with Si in reaction within the ultra-thin region away from the surface. The resulting tunneling oxide layer is supposed to have a higher density due to more saturated Si-O bonds (2.11 g/cm³ for nitric acid and 2.21–2.25 g/cm³ for ozone-based oxides) and has the composition close to that of stoichiometric SiO₂ (Moldovan et al., 2015; Sugita et al., 1996; Moldovan et al., 2014). We implemented the Si wafers herein covered by nano-layer SiOₓ with high E_a using nitric acid oxidation processing. Fig. 4(f) presented the ECV P-doped profiles in poly-Si(n+)/SiOₓ/c-Si(n) stacks after the annealing treatment of 910 °C/30 min. Apparently, the surface concentration of P-ions on the back side was 5.35 × 10²⁰/cm³ decreasing slowly as the doping depth h increases, but sharply drop off in the depth range of 0.050–0.052 μm. This confirmed that the presence of insulating SiOₓ layer for the thickness of ~2 nm prevented the diffusion of P-ions from poly-Si into c-Si layer (i.e., shielding effect). The thickness of SiOₓ layer was determined by spectroscopic ellipsometry to be 1.5 nm thin. The concentration added from 2.48 × 10¹⁰/cm³ to 6.15 × 10¹⁰/cm³ with the h changed between 0.0524 and 0.0623 μm, illustrating some P-ions still passed through the insulating layer. The change of doping concentration distribution proved that this oxide layer has superior compactness and could be used for poly-Si based passivating contacts.

3.3. Comprehensive impact of the SE and poly-Si based passivating contacts

The electrical parameters (V_{OC}, J_{SC}, FF, η) of large-area (156 × 156 mm²) n-PERT bifacial c-Si solar cells featuring front laser doping SE and rear poly-Si based passivating contacts have been taken into consideration in Fig. 5(a-d). It can be seen from Fig. 5(a) that group A-5 in 910 °C had the highest average V_{OC} of ~0.660 V, while the decreased V_{OC} would be occurred for group A-6 in 930 °C. This can be mainly explained with the local disruption of tunneling SiOₓ nano-layer (SiOₓ accounts for the vast majority) in an oxygen-free ambient of higher temperature based on the reaction of SiO₂(s) + Si(s) \rightarrow SiOₓ(s) + Si(s) ~ 2SiO(g), where the s and g denote solid and gaseous phase, respectively. The carrier-selective contact with a completely c-Si phase could be obtained (weaken the interface passivation) due to the balling-up of oxide (break the integrity of oxide) (Feldmann et al., 2014a,c). Moreover, comparing Fig. 5(a) with Fig. 5(a), the top V_{OC} of bifacial c-Si solar cells with poly-Si based passivating contacts (V_{OC} ~0.665 V) was 19 mV higher than that of solar cells without poly-Si based passivating contacts (V_{OC} ~0.646 V), resulting in an increase in top efficiency of 0.9% (absolute value). This demonstrated that poly-Si based passivating contacts played a significant role in interface passivation and carrier transport.

Fig. 5(b) presented that the J_{SC} of group A-5 was higher than that of group A-2, while group A-4 exhibited reverse trend compared to group A-1. This indicated that the higher temperature groups required longer annealing times for better passivation quality than the low temperature group. The FF in Fig. 5(c) showed the contrary trend compared to J_{SC}. The reason for FF limitation could be mainly ascribed to the following points: carrier recombination in the space charge region and at the SiOₓ rear passivation layer for the large asymmetry in capture cross-sections (the cross sections of electrons captured by recombination centers are much larger than that of holes, namely, a_p>a_n) affected by annealing temperature (Feldmann et al., 2014b), and presence of pinholes in the oxide. Therefore, the optimal annealing temperature had a compromised selection. The eventual outcome verified that the average V_{OC} of large-area n-PERT bifacial c-Si solar cells in groups of A-5 and A-6 was ~0.660 V, and the average η of ~20.7% (Fig. 5(d)), where the best electrical properties (V_{OC} ~0.665 V, J_{SC} ~40.40 mA/cm², FF ~78.75% and η~21.15%) was achieved in group A-5.

3.4. Theoretical analysis for tunneling characteristics of SiOₓ layer

It is one of the challenges to prepare high-quality nano-layer SiOₓ on a large-area Si substrate. We therefore needed to conduct an in-depth analysis to the impact of SiOₓ on the performance of solar cells featuring front B-diffused emitter with theoretical simulation to find out the optimal SiOₓ structure. Noted that AFORS-HET is the one-dimensional heterojunction simulation software, which cannot set up the two-dimensional structure like laser doping SE. An approximate treatment was adopted for SE, i.e., the simulated emitter junction parameters would be set to keep consistent with those of experimental solar cells by optimizing the surface recombination rate and B-doped sheet resistance. In fact, the object of study herein is poly-Si based passivating contacts, it is reasonable to keep a fixed value for front p^+ emitter. P-diffusion from the poly-Si layer into the c-Si substrate has not been taken into account in the simulations. Fig. 6(a-d) presented the overall electrical properties of the solar cells with various tunneling oxide thicknesses d and densities of state D_s at the interface between SiOₓ and poly-Si layers. The default parameters of the solar cells were listed in Table 1. From Fig. 6(a), the V_{OC} was found to be sensitive to D_s and approached its upper-limited value and then basically stayed stable by increasing d, for which the reason could be attributed to the suppression of leak current by oxide at a higher thickness. Fig. 6(b) displayed that the J_{SC} would decrease rapidly as d exceeded its threshold value, proving the tunneling characteristics of carrier transport. The J_{SC} showed a rapid decline as d increased to 1 nm for the D_s of 1 × 10¹² cm⁻²/eV, while still maintained stable for the d reaching 2 nm with a lower D_s of 1 × 10⁶ cm⁻²/eV. Comparing with J_{SC}, FF was less susceptible to d and D_s, i.e., FF started to decay only at a larger d and lower D_s (see Fig. 6(c)). The trends of FF in Fig. 6(d) were similar to those of J_{SC}, demonstrating that the size of the tunneling current had a momentous impact on cell efficiency. At d = 1.5 nm and D_s = 1 × 10¹⁰ cm⁻²/eV, the calculative efficiency is 21.17% (illustrated in Fig. 6(d) with V_{OC} = 0.664 V, J_{SC} = 40.42 mA/cm² and FF = 78.85%), close to the best experimental result of 21.15% in group A-5 (see Fig. 5(d) with V_{OC} = 0.665 V, J_{SC} = 40.40 mA/cm² and FF = 78.75%). We can further expect that the optimal thickness of SiOₓ layer will increase from 1.5 nm to 1.8 nm if D_s decreases by one magnitude from 1 × 10¹⁰ cm⁻²/eV, which is benefit to the process technology of poly-Si based...
with over 21% featuring front laser doping SE and back poly-Si based passivating contacts, which can reach 24.64%, of which \(V_{OC} = 0.724 \text{ V} \), \(J_{SC} = 41.2 \text{ mA/cm}^2 \), \(FF = 82.6\% \), and rear \(\eta = 22.33\% \) with \(V_{OC} = 0.722 \text{ V} \), \(J_{SC} = 37.1 \text{ mA/cm}^2 \), \(FF = 83.4\% \). The decline of rear efficiency mainly stems from the diminution of \(J_{SC} \), which can be ascribed to the position of poly-Si based passivating contacts and the reduction in photon absorption from polished back surface compared to the textured front surface. However, the incident light both on front and back sides can bring a large amount of gain compared to monofacial solar cells. We have noticed that Trina solar recently reported the realization of large-area n-type crystalline Si industry-TOPCon (i-TOPCon) solar cells with cell efficiency reaching as high as 24.58% (Chen et al., 2019). This is in good agreement with our theoretical prediction.

4. Conclusions

In summary, we have successfully fabricated the large area (156 × 156 mm²) n-PERT bifacial c-Si solar cells with top efficiency over 21% featuring front laser doping SE and back poly-Si based passivating contacts. The laser doping with appropriate energy can effectively reduce carrier recombination as well as improve interface passivation due to the lower resistivity Ohmic contact under the metal electrode area. The passivation quality of SiOₓ/poly-Si stacks grown with nitric acid oxidation and PECVD technology, respectively, has been evaluated from the implied-OC and \(\eta \) of solar cell precursors, together with the theoretical simulation to in-depth understand the nano-layer SiOₓ passivation mechanism. The relatively higher implied-\(V_{OC} \) and \(\eta \) could be obtained via increasing the annealing temperature or annealing time of from 910 °C/20 min to 910 °C/30 min or from 890 °C/30 min to 910 °C/30 min. Solar cell would still maintain the high-efficiency for the SiOₓ layer of 1.8 nm thick if the density of interface state \(D_0 \) was decreased from \(1 \times 10^{10} \text{ cm}^{-2}/\text{eV} \) to \(1 \times 10^9 \text{ cm}^{-2}/\text{eV} \). We have finally calculated the n-type...
bifacial solar cells with conversion efficiency of close to 25%, together with the yield of superior VOC over 0.720 V, by means of optimizing not only rear poly-Si based passivating contacts, but also front emitter and Si substrate parameters. This demonstrated that the n-PERT bifacial C-Si solar cells with both SE and poly-Si based passivating contacts have a good development prospect for high-efficiency.

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (No. 2018YFB1500501) and Natural Science Foundation of China (11834011 and 11674225).

References