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Hopping-induced quantum phase transition in the Ising-Rabi lattice model
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We study the ground state and low-lying polaritonic excitation states in the Ising-Rabi lattice model (IRLM),
where the transverse field in the quantum transverse field Ising model is replaced by a quantized local photon
field. The competition among the photon-hopping coupling, the intrasite Rabi interaction, and the Ising interac-
tion drives the system across a quantum phase transition from the insulating phase to the delocalized superradiant
phase. Mean-field theory confirms the existence of the quantum phase transition and the analytical expressions
for the phase boundary are derived. The spectra of low-lying polaritonic excitations and Bose-Einstein con-
densation are further explored by a unitary transformation method. The deep strong-coupling analysis reveals
a quantum criticality, where the IRLM belongs to the universality class of the XY Z model. When the hopping
strength t = 0, the properties of the ground state in the IRLM are investigated by the symmetry analysis and the
density-matrix renormalization-group method. It turns out that the photon field cannot alone serve as a global
transverse field in the quantum transverse field Ising model without the presence of hopping coupling since a
crossover behavior instead of a quantum phase transition is confirmed.
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I. INTRODUCTION

The light-matter interaction processes are fundamental to
understand our nature and lie at the center of various quantum
technologies, including lasers and many quantum computing
architectures [1–3]. Traditionally, the light-matter process has
been studied in an optical cavity, where the electromagnetic
radiation can be confined in a cavity and repeatedly absorbed
and emitted by an embedded atom, which is known as cav-
ity quantum electrodynamics [4,5]. In the simplest case, the
electromagnetic radiation specified by a single-mode quan-
tum field interacts with a two-level atom, which is referred
to as the Rabi model [6]. In the standard cavity quantum
electrodynamics experiments, when the coherent energy ex-
change is comparable or larger than the rate of dissipation
in the material, the system is in the strong-coupling regime
[7,8]. In this regime, one of the useful approximations is
the rotating-wave approximation (RWA), i.e., the neglect of
the counter-rotating coupling (CRC) terms, and the Rabi
model reduces to the Jaynes-Cummings model [9]. In the
past decade, both in theoretical insights and experimental
achievements [10–12], the physics of light-matter interaction
in ultrastrong-coupling regime are explored, where the rate
between the coupling strength and photon frequency reaches
g/ω � 0.1. In the ultrastrong-coupling regime, RWA is not
valid anymore and the CRC terms lead to novel features,
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such as the Bloch-Siegert shift [13,14]. Recently, the deep
strong-coupling (DSC) regime has been transitioned from a
theoretical study to an experimental reality [15–17], where the
rate g/ω � 1.

With the fast development of technology, quantum simula-
tors pave the way for realizing light-matter coupling systems
in the array of optical lattices to understand the emergent phe-
nomena in strongly correlated many-body systems. Compared
with the traditional strongly interacting condensed-matter
systems, the quantum optical systems have relatively large
distances and timescales, which allow for the high level of
the measurement and manipulation of individual cavities at
the quantum level [18,19]. In quantum simulator systems, the
interaction among the different sites can be described by the
hopping term [20–22], which compete with the on-site cou-
pling and give rise to rich physical phenomena. For example,
an experimental realization of the Rabi lattice model (RLM)
using trapped ions is reported and its equilibrium properties
and quantum dynamics are controllably studied [23]. With
different types of hopping coupling, different sites couple
together by tunneling of photons, and a variety of novel phases
are demonstrated in the RLM. For the negative hopping cou-
pling, the RLM undergoes the quantum phase transition from
the insulating phase to the delocalized superradiant phase
[24–26]. Due to the CRC terms breaking the conservation
polariton number, the Motts lobes are absent in the phase
diagram of the RLM [24–28]. When neighboring sites are
coupled by positive hopping interaction, the frustrated super-
radiant phase transition is reported on a triangle motif [29].
Besides, the complex photon-hopping coupling with a phase

2469-9926/2023/108(2)/023723(12) 023723-1 ©2023 American Physical Society

https://orcid.org/0000-0003-1751-7682
https://orcid.org/0000-0003-3560-4632
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.023723&domain=pdf&date_stamp=2023-08-23
https://doi.org/10.1103/PhysRevA.108.023723


HU, LÜ, LIN, AND ZHENG PHYSICAL REVIEW A 108, 023723 (2023)

can be induced by an artificial magnetic field, which leads to
the breaking of the time-reversal symmetry and a chiral super-
radiant phase can emerge in the quantum Rabi ring [30–32].
We notice that in all of those systems the photon fields couple
with the localized two-level systems. We are thus motivated
to explore the physics in a general light-matter system, where
the photon field couples with the strongly correlated model
inherently.

The quantum transverse field Ising (QTFI) model is one
of the simplest paradigmatic strongly correlated models [33],
which reads as

ĤTI = h
∑

i

σ̂ x
i − J

∑
〈i, j〉

σ̂ z
i σ̂ z

j , (1)

where h is the strength of the external transverse field and
J is the Ising interaction strength between nearest-neighbor
sites. In the experiments [34,35], the QTFI model can couple
with the photon field inherently, through replacing the tunable
transverse field h by a quantized photon field, i.e., (b̂†

i + b̂i ),
for example, one mode of a cavity in each site. After this
substitution, the system is described by the Hamiltonian of
the Ising-Rabi lattice model (IRLM) in the following:

ĤIR =
∑

i

ωb̂†
i b̂i +

∑
i

gσ̂ x
i (b̂†

i + b̂i ) − J
N∑

〈i, j〉
σ̂ z

i σ̂ z
j

− t
N∑

〈i, j〉
(b̂†

i b̂ j + b̂ib̂
†
j ), (2)

where g is the strength of the Rabi interaction, and b̂†
i (b̂i ) is

the creation (annihilation) operator of a single-mode cavity
with the frequency ω. The corresponding hopping of photons
between nearest-neighbor cavities is described by the last
term in Eq. (2), i.e., −t (b̂†

i b̂ j + b̂ib̂
†
j ), with the parametrized

coupling strength t . In this model, the photon field of the
IRLM inherently couples with the strongly correlated Ising
model. As the schematic of the IRLM shown in Fig. 1,
nearest-neighbor sites are simultaneously coupled by the Ising
interaction and photon-hopping coupling. The IRLM can be
realized by the trapped-ion setups [34,35], where hopping
coupling comes from the Coulomb interaction between ions
[20–22]. When the photon-hopping coupling terms are ne-
glected, the model is reduced to the one in Ref. [35]. The
Hamiltonian of the IRLM has the discrete global Z2 symme-
try, with the parity operator P̂ = ∏N

i exp[iπ (b̂†
i b̂i + σ̂+

i σ̂−
i )].

In this paper, we demonstrate that the competition among
the photon-hopping coupling, the intrasite Rabi interaction
and the Ising interaction drives the system across a quantum
phase transition from the insulating phase to the delocalized
superradiant phase. We use mean-field theory (MFT) to calcu-
late the phase diagram and the unitary transformation method
to calculate the spectra of lower-energy excitations and further
elucidate the Bose-Einstein condensation. The DSC analysis
reveals a quantum criticality, where the IRLM belongs to
the universality class of the XY Z model. We compare the
cases with the finite hopping coupling (t �= 0) with those
with vanishing hopping coupling (t = 0). In the finite hopping
coupling case, positive critical hopping strengths are obtained.
When the hopping strength t = 0, both the symmetry analysis

FIG. 1. Schematic of the Ising-Rabi lattice model (IRLM) in a
two-dimensional square lattice. Nearest-neighbor sites are coupled
simultaneously by the Ising interaction with strength J and photon-
hopping coupling with strength t .

and the density-matrix renormalization group (DMRG) re-
sults display a crossover behavior instead of a quantum phase
transition as the Ising interaction increases. The comparison
demonstrates the necessity of the photon-hopping coupling
for inducing the quantum phase transition. Despite the fact
that the IRLM stems from the QTFI, we prove that the photon
field alone cannot serve as a global transverse field without
the presence of hopping coupling.

This paper is organized as follows: The mean-field treat-
ment is applied on the IRLM in Sec. II, where we provide
analytical expressions for the phase boundary. The correspon-
dence beyond the mean-field level is explored in Sec. III,
where we introduce the unitary transformations to study po-
laritonic excitations behavior in the IRLM. In Sec. III A, the
ground states and polaritonic excitation spectra in the insu-
lating phase are calculated. The DSC limit is considered in
Sec. III B. In Sec. III C, the polaritonic excitation spectra and
the order parameter in the delocalized superradiant phase are
presented. In Sec. IV, the ground-state properties of the IRLM
in the case of t = 0 are explored by the symmetry analysis
and the DMRG. Finally, we give the conclusion of the present
work in Sec. V.

II. MEAN-FIELD THEORY

The main idea in MFT is that it neglects the correlations be-
tween different sites, then the photon-hopping coupling terms
and Ising interaction in the IRLM are decoupled as

b̂†
i b̂ j � 〈b̂†

i 〉b̂ j + b̂†
i 〈b̂ j〉 − 〈b̂†

i 〉〈b̂ j〉, (3)

σ̂ z
i σ̂ z

j � 〈
σ̂ z

i

〉
σ̂ z

j + σ̂ z
i

〈
σ̂ z

j

〉 − 〈
σ̂ z

i

〉〈
σ̂ z

j

〉
. (4)

Here, we introduce the order parameter ψ ≡ 〈b̂ j〉. The expec-
tation value of σ̂ z

i in the ground state is noted as m = −〈σ̂ z
i 〉.

Then, the original IRLM Hamiltonian [Eq. (2)] reduces to a
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mean-field Hamiltonian, namely

ĤMF =
∑

i

zJmσ̂ z
i + ωb̂†

i b̂i + gσ̂ x
i (b̂†

i + b̂i ) − ztψ (b̂†
i + b̂i )

+ ztNψ2 + zJm2N

2
, (5)

where z is the coordinate number. The order parameter is
determined by minimizing the ground-state energy of the
mean-field Hamiltonian, and the parameter m can be deter-
mined self-consistently. When ψ = 0 reveals an insulating
phase (or a disordered phase), characterized by the fixed par-
ity number with respect to P̂, 〈b̂i〉 = 0 and 〈σ̂ x

i 〉 = 0. Above
the critical photon-hopping strength tc, a symmetry-breaking
long-range ordering phase emerges, where the photon field
becomes coherent 〈b̂i〉 �= 0, and the two-level atoms polarize
to generate a ferroelectrically ordered state 〈σ̂ x

i 〉 �= 0. Indeed,
this phase transition bears a resemblance to the superradi-
ant quantum phase transition in the Dicke model with the
addition of nontrivial spatial quantum fluctuations [36–39].
The emerging long-range ordering phase can be regarded as a
delocalized superradiant phase since the excitations delocalize
across the lattice [25,26,40].

It is important to highlight that the mean-field Hamiltonian
ĤMF [Eq. (5)] exhibits different features from the mean-field
Hamiltonian of the RLM in Ref. [25]. Due to the coupling
between the photon field and the QTFI, the mean-field atomic
transition energy zJm is dependent on both the photon fre-
quency ω and the atom-photon coupling g, which cannot be
initially determined, while in the RLM they are independent.
Consequently, both the mean-field treatments and obtained
results differ significantly from those of the RLM [25].

In this paper, we propose a perturbative method to deter-
mine the expectation value m self-consistently. In the critical
region, the order parameter ψ is small and we can expand m
in the order of ψ , i.e.

m = m0 + m2ψ
2 + · · · , (6)

where m0 and m2 are the coefficients of the corresponding
power of ψ and can be determined self-consistently. Note that
all odd-order terms in the expansion Eq. (6) vanish because of
the invariance of m under the global gauge transformation,

ψ → −ψ, b̂i → −b̂i, σ̂ x
i → −σ̂ x

i . (7)

Then, the mean-field Hamiltonian can be expressed as a
sum over individual sites, ĤMF = ∑

i ĥMF
i , where the single

site mean-field Hamiltonian ĥMF
i is expanded in the order of

ψ as

ĥMF
i = ĤR

i − ztψ (b̂†
i + b̂i ) + zJm2ψ

2σ z
i

+ ztψ2 + zJm2

2
+ O(ψ4), (8)

where the ĤR
i represents the Rabi model with the Hamiltonian

ĤR
i = zJm0σ̂

z
i + ωb̂†

i b̂i + gσ̂ x
i (b̂†

i + b̂i ). (9)

Around the critical point, the terms in ĥMF
i involving ψ can be

treated perturbatively, resulting in an expansion of the ground
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FIG. 2. The value of the self-consistent parameter m0 at the crit-
ical point.

state |G〉i in powers of ψ as

|G〉i = |0〉 − zψ
∑
n �=0

|n〉 〈n|t (b̂†
i + b̂i )|0〉

E0 − En
+ O(ψ2), (10)

where |n〉 represents the exact nth eigenstate of the Rabi
Hamiltonian ĤR

i , and En is the corresponding eigenenergy.
The analytic solution of the Rabi model was found [41,42].
The self-consistent relation of the parameter m0 can be ob-
tained from the perturbative ground state |G〉i as

m0 = − 〈0|σ̂ z
i |0〉. (11)

This equation can be solved iteratively to determine the value
of m0 accurately. Note that in the Rabi Hamiltonian ĤR

i
[Eq. (9)], the atomic transition energy zJm0 depends on both
the coupling strength g and photon frequency ω, which is a
primary difference from the counterpart mean-field Hamilto-
nian in the RLM [25]. To more intuitively demonstrate the
differences, we presented the value of the self-consistent pa-
rameter m0 at the critical point in Fig. 2. As the function of
ω/g, m0 varies greatly, indicating the significant influence on
the phase boundary.

The parameters m2 and the coefficient of higher power of ψ

in Eq. (6) can be obtained self-consistently using an iterative
approach similar to that used for m0. However, we only need
to consider the self-consistent relation for m0, without explic-
itly treating the higher-order parameters. This is because, up
to the order of ψ2, the ground-state energy EMF

g in perturba-
tion theory depends exclusively on m0. The expression of the
perturbation ground-state energy in the powers of ψ is

EMF
g

N
= E0 + zJ

m2
0

2
+ ztψ2

+ z2
∑
n �=0

〈n|t (b̂† + b̂)|0〉2

E0 − En
ψ2 + O(ψ4). (12)

Due to the parity symmetry of ĤR, all odd-order terms also
vanish in Eq. (12). In the spirit of Landau theory, the second-
order terms being zero indicates a phase transition. Thus, the
analytical expressions for the phase-transition boundary are
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FIG. 3. The phase diagram of the two-dimensional IRLM ob-
tained by the different approximation methods, in (zt/g, ω/g) plane:
(a) for zJ/ω = 0.5; (b) zJ/ω = 1. The dashed line denotes the result
of the mean-field theory (MFT) in Eq. (13), the solid line represents
the result of the unitary transformation method in Eq. (24), and the
dash-dotted line shows the result of the deep strong-coupling limit in
Eq. (30). The horizontal axis is in a logarithmic scale.

obtained as

1

ztc
= −

∑
n �=0

〈n|(b̂† + b̂)|0〉2

E0 − En
. (13)

Since the effect of the dimension and the spatial lattice in the
mean-field results is captured only by z, the phase boundary
in Eq. (13) can be applied in the general lattice of arbi-
trary dimensions. Note that the eigenstate |n〉 differs from
the counterpart in Ref. [25], as the atomic transition energy

zJm0 depends on both the coupling strength g and photon
frequency ω, in Eq. (9). For the Rabi model, the ground state
is nondegenerate [41,42]. Due to En > E0, the MFT always
gives the positive critical hopping strength. Below the critical
photon-hopping strength tc, the value of ψ = 0 reveals the
insulating phase. Above the critical photon-hopping strength
tc, the global Z2 parity symmetry P̂ is broken and the IRLM
is in the delocalized superradiant phase with the nonzero or-
der parameter |ψ | > 0. In Fig. 3, we present the mean-field
phase diagram (dashed line) of the IRLM in the two-
dimensional square lattice in (zt/g, ω/g) plane for zJ/ω = 0.5
and zJ/ω = 1. The results of the unitary transformation
method and the DSC limit are shown in Sec. III.

Due to the lack of closed-form solutions in the Rabi model,
it is hard to directly apply Eq. (13) to investigate the compe-
tition relation among the different energy scales (g, J , and t).
Besides, the mean-field treatment cannot predict the low-lying
excitation, which is important in low temperatures. In the next
section, we use the unitary transformation to further reveal the
property of the low-lying polaritonic excitations.

III. POLARITONIC EXCITATIONS
AND BOSE-EINSTEIN CONDENSATION

The unitary transformation method has been used to suc-
cessfully illustrate the phase transition and excitation behavior
in the RLM [24,25]. In this section, we use the unitary trans-
formation method to study the ground state and low-lying
polaritonic excitation properties in the IRLM. The purpose
of the transformation is to take into account the atom-photon
correlation effect in the Rabi interaction. In the unitary trans-
formation method, the displacement transformation Ŝ1 and the
squeezing transformation Ŝ2 are performed to ĤIR, where

Ŝ1 = 1√
N

∑
k

∑
i

gξk

ωk
σ̂ x

i (b̂†
−k − b̂k)e−ikri , (14)

Ŝ2 = 1

2

∑
k

ln(τk)(b̂kb̂−k − b̂†
kb̂†

−k), (15)

where b̂k is the Fourier form of the annihilation operator with
frequency ωk = ω − ztγk, and γk = ∑

e cos(ke)/z is lattice
dispersion (e is the unit lattice vector). The hopping cou-
pling requires the k-dependent displacement parameters ξk

and the squeezing parameters τk, which will be determined
later to eliminate the CRC terms. The unitary transformation
performed on the Hamiltonian Ĥ ′ = eŜ2 eŜ1 ĤIRe−Ŝ1 e−Ŝ2 can
be done straightforwardly to the end in Appendix A. The
transformed Hamiltonian is divided into three parts, Ĥ ′ =
Ĥ ′

0 + Ĥ ′
1 + Ĥ ′

2, where

Ĥ ′
0 = − NV0 +

∑
k

ωk

4

[
τ 2

k |b̂†
−k + b̂k|2 − τ−2

k |b̂†
−k − b̂k|2 − 2

]

−
∑
〈i, j〉

σ̂ z
i σ̂ z

j

∑
k

Jβkλ
2
k

4
(b̂†

kb̂†
−k + b̂kb̂−k − 2b̂†

kb̂k)

− (κ + η)J

2

∑
〈i, j〉

σ̂ z
i σ̂ z

j + (κ − η)J

2

∑
〈i, j〉

σ̂
y
i σ̂

y
j − 1

N

∑
i, j

σ̂ x
i σ̂ x

j

∑
k

[
g2

ωk
ξk(2 − ξk) − V0

]
eik(ri−r j ), (16)
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and Ĥ ′
1 [Eq. (A1)] and Ĥ ′

2 [Eq. (A2)] are presented in Ap-
pendix A. The parameter V0 [Eq. (A4)] is subtracted to
eliminate a constant self-interaction at the same site. For con-
venience, we introduce another two the parameters λk and βk

defined as

λk ≡ 2gξk

ωkτk
, (17)

βk ≡ κ + η + γk(κ − η), (18)

where two photon-dressing parameters η and κ are defined as

η = exp

[
− 1

N

∑
k

(1 − γk)λ2
k

]
, (19)

κ = exp

[
− 1

N

∑
k

(1 + γk)λ2
k

]
, (20)

which arise from the rearrangement of the photon opera-
tors exp(X̂i − X̂ j ) and exp(X̂i + X̂ j ) into the normal ordering,
respectively.

In the IRLM, the photon field inherently couples with the
QTFI, and the competition arises among the photon-hopping
coupling, the on-site Rabi interaction, and the intersite Ising
interaction. The unitary transformation method reveals the
various effects from this competition. Specifically, the Ising
interaction induces two types of intersite interaction, namely,
σ

y
i σ

y
j and σ z

i σ z
j , with the renormalized interaction strengths

(κ − η)J/2 and (κ + η)J/2, respectively. Additionally, the
Rabi interaction induces another long-range interaction, i.e.,
σ x

i σ x
j . The photon-hopping coupling involves the k-dependent

displacement parameter ξk and the squeezing parameter
τk. These k-dependent parameters give rise to two differ-
ent photon-dressing parameters η and κ . Consequently, all
three types of intersite atom interactions (i.e., σ

y
i σ

y
j , σ z

i σ z
j ,

and σ x
i σ x

j ) exhibit nonvanishing strength in the transformed
Hamiltonian Ĥ ′

0 [Eq. (16)]. To the contrary, only a σ x
i σ x

j term
exists in the transformed Hamiltonian of the RLM [25]. Con-
sequently, the different dependencies of the transformation
parameters on the k mode and a different quantum criticality
are obtained.

A. Insulating phase

Through the Bogoliubov transformation and the linearized
spin-wave approximation, we demonstrate the two-level
atoms and photons are hybridized to form the polaritonic
states in Appendix B. The unitary transformation treatment
shares similarities with the approach outlined in Ref. [25],
while the dependencies of the transformation parameters
on the k mode differs due to the addition of the intersite
interactions (i.e., σ̂ y

i σ̂
y
j and σ̂ z

i σ̂ z
j ) and two types of the photon-

dressing parameters κ and η. The transformed Hamiltonian
Ĥ ′ can be mapped to a diagonalized polariton model Ĥ I [see
Eq. (B8)],

Ĥ I = EI
g +

∑
k

E±
I (k)d̂†

±kd̂±k, (21)

where the two-branch excitation energy is

E±
I (k) = 1

2

(
zJβkρ

2
k + ωkτ

2
k

)
± 1

2

√(
zJβkρ

2
k − ωkτ

2
k

)2 + 4g2
Ik. (22)
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FIG. 4. The dispersion relation of the low-branch polaritonic
excitations E−

I (S)(k) for the two-dimensional square lattice IRLM at
ω = 1.5g around the critical points: (a) zJ/ω = 0.5; (b) zJ/ω = 1.
Energies are in the units of ω.

In the insulating phase, the ground-state energy EI
g [Eq. (B3)],

the effective coupling strength gIk [Eq. (B2)], the displace-
ment function ξk [Eq. (B7)], the squeezing function τk

[Eq. (B6)], and another Bogoliubov transformation parameter
ρk [Eq. (B5)] are determined in Appendix B. Since the dis-
placement transformation Ŝ1 and the squeezing transformation
Ŝ2 are commutative with the parity operator P̂, the insulating
phase preserves the Z2 symmetry and is characterized by
〈σ̂ x

i 〉 = 0 and 〈b̂i〉 = 0.
The dispersion relation of the lower-energy branch E−

I (k)
for the two-dimensional square lattice are plotted in Fig. 4(a)
for zJ/ω = 0.5 and Fig. 4(b) for zJ/ω = 1 inside the insulat-
ing phase with ω = 1.5g. The polaritonic excitation spectra
are gapped cosine-like bands, and have their minima at the �

point. As we show the case of zJ/ω = 0.5 in Fig. 4(a), there
exists a gap at k = 0 in the insulating phase zt/g = 0.200.
With the increase of zt/g, the gap comes to decrease. The gap
E−

I (0) closes at the critical point, ztc/g = 0.231 29, with linear
dispersion at small k. Similar behavior is also found for the
case zt/ω = 0.5 in Fig. 4(b), where the gap E−

I (0) decreases
with increasing of the hopping strength t , and eventually
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disappears at the critical point ztc/g = 0.535 53. The gapped
excitation energy ensures the stability of the insulating ground
state.

We present the boundary of the phase transition. When the
hopping strength t is above the critical point tc, the polaritonic
excitation energy E−

I (0) in Eq. (22) becomes negative. It
indicates that the insulating ground state is no longer stable in
this situation. In other words, the addition of more polaritons
to the system always lowers the ground-state energy. Then
macroscopic polaritons should occupy the ground state and
the Bose-Einstein condensation of the polaritons emerges.
Therefore, the condition for the presence of the stable insulat-
ing phase can be used as a criterion to determine the boundary
of the phase transition,

2G0 � zJ (κ + η), (23)

where G0 = 2(g2/ω0 − V0).
The curve of the phase boundary is determined by the

equation,

2G0 = zJ (κ + η), (24)

which can be solved numerically. In Fig. 3, we also plot the
phase diagrams of the two-dimensional square lattice IRLM
obtained by Eq. (24) in (zt/g, ω/g) plane. Since the phase
diagrams from Eq. (24) are highly consistent with the MFT
results, we confirm that the approximation used in the unitary
transformation method is reasonable.

To get a better description of the phase transition, we
further illustrate the influence of different energy scales on
the phase transition boundary. In the unitary transformation
method scheme, the photon-hopping coupling requires the
k-dependent displacement parameters ξk and the squeezing
parameters τk. As a result, the Rabi interaction cooperates
with the photon-hopping coupling inducing a nonvanishing
long-range σ̂ x

i σ̂ x
j interaction among the intersite atoms in the

last term of Ĥ ′
0 [Eq. (16)], which favors the long-range order-

ing phase. On the contrary, the Ising interaction with coupling
strength J prefers the insulating phase, which competes with
the Rabi interaction and hopping coupling. The competi-
tion drives the system across the quantum phase transition.
Consequently, the increase of the Ising interaction strength
J requires the higher critical hopping coupling tc to reach
the long-range ordering phase, which is confirmed in Fig. 5,
where the critical hopping strength ztc/g is a monotonically
increasing function with respect to the zJ/g.

B. Deep strong-coupling limit

Using the unitary transformation method, we take into ac-
count the atom-photon correlation in the Rabi interaction and
obtain the ground state and the low-lying polaritonic excita-
tion behavior. In the DSC limit, g 
 ω, the equations (B6) and
(B7) that determine the parameters of the unitary transforma-
tion can be solved and give τk = 1 and ξk = 1. In this case, the
ground state of the transformed Hamiltonian Ĥ ′ � Ĥ ′

0 + Ĥ ′
1

possesses the photon vacuum state, then it is reasonable to
average the Hamiltonian Ĥ ′ over the photon vacuum state
|vac〉 as ĤXYZ = 〈vac|Ĥ ′|vac〉. As a result, the original IRLM
Hamiltonian reduces to the quantum XY Z model [43,44] in

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
05

0.
20

0.
50

2.
00

zJ g

zt
/g

ω g = 1.25
ω g = 1.50
ω g = 2.00

Delocalized Superradiant Phase

Insulating Phase

FIG. 5. The phase diagram of the two-dimensional square lattice
IRLM in (zt/g, zJ/g) plane with fixed ω/g = 1.25, 1.5, 2.00. The
vertical axis is in a logarithmic scale.

the weak hopping coupling case (ω 
 t),

ĤXYZ = Ng2

ω
− (κ + η)J

2

∑
〈i, j〉

σ̂ z
i σ̂ z

j − 2J
g2

ω2

∑
〈i, j〉

σ̂ x
i σ̂ x

j

+ (κ − η)J

2

∑
〈i, j〉

σ̂
y
i σ̂

y
j . (25)

Although the XY Z model is one of the most widely studied in-
tegrable models in one-dimensional chains [45,46], the phase
diagram and the critical behavior of the XY Z model in the
general lattice has not been fully investigated [47]. Following
the approximation in Sec. III A, we derive the results of spin-
wave theory for a general lattice [44]. After the linearized
spin-wave approximation, ĤXYZ is approximated as

ĤXYZ � Ng2

ω
− (κ + η)zJ

4
+ (κ + η)zJ

∑
k

â†
kâk

− (κ − η)zJ

4

∑
k

γk(â†
−k − âk)(â†

k − â−k)

− zJ
g2

ω2

∑
k

γk(â†
−k + âk)(â†

k + â−k), (26)

where the mean-field approximation is applied,
∑

〈i, j〉 σ̂ z
i σ̂ z

j �
z
∑

i σ̂
z
i − z

2 . After a Bogoliubov transformation with the gen-
erator S4 given by

Ŝ4 = 1

2

∑
k

ln
(
φ−1

k

)
(âkâ−k − â†

kâ†
−k), (27)

the XY Z model reduces to the free boson model as

eŜ4 ĤXYZe−Ŝ4 = − 3(κ + η)zJN

4
+ Ng2

ω
+ 1

2

∑
k

zJβkφ
2
k

+
∑

k

zJβkφ
2
k â†

kâk, (28)

023723-6



HOPPING-INDUCED QUANTUM PHASE TRANSITION IN … PHYSICAL REVIEW A 108, 023723 (2023)

where

φ2
k =

√
4

zJβk

[
(κ + η)zJ

4
− g2

ω2
zJγk

]
. (29)

The excitation energy spectrum is zJβkφ
2
k , which has the

minimum at k = 0. The DSC limit results also give the gapped
excitation energy in the insulating phase and the gap closes at
the critical point tc,

tc = ω2

g2

(κ + η)J

4
(30)

� ω2J

2g2
exp

(
−4g2

ω2

)
cosh

(
4g2

ω2

2tc
ω

)
. (31)

Since the critical point tc is always positive, it confirms that the
photon-hopping coupling is necessary to induce the quantum
phase transition in the IRLM.

The phase boundary obtained from the DSC limit in
Eq. (30) is also plotted in Fig. 3. The results of the DSC limit
are consistent with the general phase boundary in Eq. (24)
in the case g 
 ω. As the critical hopping strength tc ∝
ω2J
2g2 exp(− 4g2

ω2 ), even the weak hopping coupling can induce
the quantum phase transition. As we show in Fig. 3(a), when
the ratio g/ω ∼ 1, the critical hopping strength ztc/g is on the
order of 10−3. Since the light-matter coupling has reached the
DSC regime [15–17], this quantum phase transition could be
observed in an experiment.

The DSC analysis reveals a feature of the IRLM. The
competition among the photon-hopping coupling, the on-site
Rabi interaction, and the intersite Ising interaction leads to
the emergence of three distinct types of intersite atom in-
teractions, i.e., σ x

i σ x
j , σ

y
i σ

y
j , and σ z

i σ z
j , with nonvanishing

interaction strength, as shown in Eqs. (16) and (25). Thus, de-
spite originating from the QTFI, the DSC analysis unveils that
the IRLM belongs to the universality class of the XY Z model.
This unique feature implies that the IRLM offers an alternative
experimental setup for exploring the critical behavior of the
XY Z model.

C. Delocalized superradiant phase

In the delocalized superradiant phase, we also apply the
unitary transformation method to investigate the polaritonic
excitations behavior near the critical point. When 2G0 >

zJ (κ + η), the ground state is characterized by the condensa-
tion of macroscopic polaritons, resulting in a coherent photon
field and atomic polarization. To further approximately diag-
onalize the transformed Hamiltonian, we need to introduce a
static displacement operator R̂ [Eq. (C1)] and a unitary rota-
tion operator Û [Eq. (C2)], following the approach outlined in
Ref. [25]. In Appendix C, the IRLM reduces to a diagonalized
polariton model as ĤS [see Eq. (C13)]

ĤS = ES
g +

∑
k

E±
S (k) p̂†

±k p̂±k, (32)

where the two-branch excitations energy is given by

E±
S (k) = 1

2

(
Wkθ

2
k + ωkτ

2
k

)
± 1

2

√(
Wkθ

2
k − ωkτ

2
k

)2 + 4g2
Sk. (33)
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FIG. 6. (a) The order parameter ψ = 〈b̂i〉 with ω/g = 1.5 and
ω = zJ . (b) The expectation value −〈σ̂ x

i 〉 in the ground state with
ω/g = 1.5 and ω = zJ . The critical point is ztc/g = 0.535 53.

In the delocalized superradiant phase, the ground-state energy
ES

g [Eq. (C5)], the effective coupling strength gSk [Eq. (C4)],
the parameter Wk [Eq. (C10)], the displacement function ξk

[Eq. (C8)], the squeezing function τk [Eq. (C9)], and the
Bogoliubov transformation parameter θk [Eq. (C7)] are deter-
mined in Appendix C.

To maintain the stability of the delocalized superradiant
phase in the IRLM, the polariton excitations should have a
positive-energy cost. Specifically, the lower-energy branch of
polariton excitation energy E−

S (k) must be positive. Thus, the
boundary for the stable delocalized superradiant phase can be
expressed as

2G0 � (κ + η)zJ. (34)

which is in accordance with the phase boundary in the insu-
lating phase [Eq. (24)].

In the delocalized superradiant phase, two typical low-
branch polaritonic excitations E−

S (k) in the two-dimensional
square lattice IRLM at ω = 1.5g are also plotted in Figs. 4(a)
and 4(b), near the critical hopping strength tc. In both cases,
the polaritonic excitations have a positive gap in the delocal-
ized superradiant phase.

In the delocalized superradiant phase, the Z2 symmetry
with respect to the parity operator P̂ is broken, and the ex-
pectation of the 〈σ̂ x

i 〉 and the photonic annihilation operator
ψ = 〈b̂i〉 in the ground state have nonvanishing values. The
values of 〈σ x

i 〉 and ψ = 〈b̂i〉 can be calculated by〈
σ̂ x

i

〉 = σ0

4

1

N

∑
k

(
θ−2

k + θ2
k − 2

) − σ0, (35)

ψ = gσ0

ω0
− gσ0ξ0

2ω0

1

N

∑
k

(
θ−2

k + θ2
k − 2

)
. (36)

The numerical results of ψ and −〈σ x
i 〉 as the functions of zt/g

are presented in Fig. 6 with ω/g = 1.5 and ω = zJ .

IV. ABSENCE OF PHOTON-HOPPING COUPLING: t = 0

In this section, we consider the special situation t = 0.
Then, the Hamiltonian of the IRLM [35] becomes

Ĥ0
IR =

∑
i

ωb̂†
i b̂i +

∑
i

gσ̂ x
i (b̂†

i + b̂i ) − J
N∑

〈i, j〉
σ̂ z

i σ̂ z
j , (37)
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FIG. 7. The DMRG results of the one-dimensional hopping-absent IRLM Ĥ 0
IR with the chain length N = 24, 48, 60, 72 in the free

boundary. The mean ground-state energy Eg = 1
N 〈G|Ĥ 0

IR|G〉 as a function of the rescaled Rabi interaction strength g/J: (a) ω/J = 0.308;
(b) ω/J = 0.584; (c) ω/J = 1. The mean photon number n = 1

N 〈G|b̂†b̂|G〉 as a function of the rescaled Rabi interaction strength g/J:
(d) ω/J = 0.308; (e) ω/J = 0.584; (f) ω/J = 1. Energies are in the units of J .

which still has the intersite coupling through the Ising interac-
tion. The properties of the ground state will be investigated
through the symmetry analysis and the numerical DMRG
method. Despite the existence of the Ising interaction, the
Hamiltonian Ĥ0

IR does not exhibit a quantum phase transition.
This unique characteristic reveals that even though the IRLM
stems from the QTFI by substituting the transverse field with
the quantized photon field, the photon field alone cannot serve
as a global transverse field without the presence of hopping
coupling.

A. Symmetry analysis

There exists a remarkable different symmetry property be-
tween this Hamiltonian Ĥ0

IR without photon-hopping coupling
and the original Hamiltonian ĤIR in Eq. (2). The Hamiltonian
Ĥ0

IR possesses a local Z2 symmetry with the parity operator
P̂i = exp[iπ (b̂†

i b̂i + σ̂+
i σ̂−

i )], since it is invariant under the
transformation P̂†

i Ĥ0
IRP̂i = Ĥ0

IR. The photon-hopping coupling
terms break the local symmetry P̂i but maintain the global
symmetry with the parity operator P̂ = ∏

i Pi. Besides, the
Hamiltonian Ĥ0

IR also possesses a global Z2 symmetry related
to the parity operator P̂ = ∏

i σ̂
x
i . On one hand, due to those

two symmetries, it is easy to show the eigenstates are all
doubly degenerate. According to Elitzur’s theorem [48], i.e.,
the local symmetry P̂i cannot be spontaneously broken, the
parity numbers with respect to P̂i are good quantum numbers.
We denote the lth eigenstate of Ĥ0

IR as |ψl〉, which satisfies
Ĥ0

IR|ψl〉 = El |ψl〉 and P̂i|ψl〉 = pi|ψl〉 (pi = ±1), where El is
the eigenvalue of eigenstate |ψl〉. For each eigenstate |ψl〉,
it has another eigenstate |ψ ′

l 〉 = P|ψl〉, where |ψl〉 and |ψ ′
l 〉

have the same eigenvalue El , but the opposite parity values of
the operator P̂i. Then, all eigenstates are doubly degenerate.
On the other hand, Elitzur’s theorem requires the eigenstate to
satisfy the parity P̂i, while [P̂i, P̂] �= 0. As a result, P̂ is always
broken. Thus, the symmetry analysis indicates the quantum
phase transition related to P̂ broken should be absent in the
case of t = 0. It is a crossover behavior rather than a quantum
phase transition with respect to the increasing of the Rabi
interaction.

B. Density matrix renormalization group results

We use the DMRG algorithm [49,50] to further investigate
the ground-state properties of the Ĥ0

IR in a chain of N sites with
the free boundary. The DMRG algorithm is implemented,
utilizing the C + + version of the ITensor library [51], and
the cutoff for the maximum Fock state of local photon number
is set as Mc = 50, which is large enough to confirm that the
DMRG algorithm converges. In Fig. 7, we show the mean
ground-state energy Eg = 1

N 〈G|Ĥ0
IR|G〉 and the mean photon

number n = 1
N 〈G|b̂†b̂|G〉 as a function of rescaled coupling

strength g/J with the chain length N = 24, 48, 60, 72. The
results show that the curves of Eg and n almost collapse to-
gether for the N � 48 in all the cases J/ω = 0.308 [Figs. 7(a)
and 7(d)], J/ω = 0.584 [Figs. 7(a) and 7(e)], and J/ω = 1
[Figs. 7(c) and 7(f)]. It means that the chain with N = 72
sites is large enough to describe the properties of the ground
state in the thermodynamic limit. In Fig. 7, the DMRG re-
sults show that as the increase of Rabi interaction strength
g/J , the ground-state energy decreases and the mean photon
number increases gradually. Although the ascending slope of
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the mean photon number becomes much steeper in the small
ratio ω/J , neither nonanalytic nor discontinuous behaviors are
presented in Fig. 7. Thus, the mean photon number should not
be regarded as the order parameter, which is zero below the
phase-transition point and has a finite value above the phase-
transition point. Besides, the important feature of finite-size
scaling behavior [52–54] for the second-order phase transition
is also absent. Consequently, as the Rabi interaction strength
g/J increases, it is more reasonable to regard the rapid growth
of the photon number as a crossover behavior rather than a
quantum phase transition.

V. CONCLUSION

In this work, we study the ground state and the spectra
of low-lying excitations of the IRLM. The IRLM combines
two paradigmatic models, the RLM from quantum optics and
QTFI from condensed-matter physics, where the transverse
field in the QTFI is replaced by the quantized photon field.
Due to highly experimental achievement, the IRLM can be
realized by the trapped ions [35] or superconducting qubits
[55]. We expect that the IRLM can serve as the paradigmatic
model to study light-matter coupling systems.

In the IRLM, the competition among the photon-hopping
coupling, the intrasite Rabi interaction, and the Ising interac-
tion drives the system across a quantum phase transition from
the insulating phase to the delocalized superradiant phase.
The mean-field treatment is applied to clarify the existence
of a quantum phase transition, and the analytical expressions
for the phase boundary are derived. By the unitary transfor-
mation method, the IRLM maps to the polariton model, and
polaritonic excitations are explored beyond the mean-field
approximation. In the weak hopping situation, the system is
in the insulating phase with gapped polaritonic excitations.
With the increase of the hopping strength until to the critical
point tc, the insulating ground state becomes no longer stable
and Bose-Einstein condensation emerges. From the stability
of the ground state, we obtain the analytical expression for the
boundary of the phase transition, which is consistent with the
MFT results. Above the critical point, macroscopic polaritons
occupy the ground state, resulting in the coherent photon field
and atomic polarization. The DSC analysis demonstrates that
the critical hopping strength tc exponentially decays, indicat-
ing the potential observability of the quantum phase transition
in experimental settings. Moreover, the critical behavior of the
IRLM is characterized by the universality class of the XY Z
model.

Compared with the RLM in the previous paper Ref. [25],
the primary difference between the two models is that, in
the IRLM, the photon field inherently couples with the
strongly correlated model, while in the RLM, the photon
field only couples with a local two-level system. Due to their
unique physics, the two models exhibit different interaction
competitions and yield distinct results. In the IRLM, the
Ising interaction and photon-hopping coupling terms couple

nearest-neighbor sites simultaneously. Within the mean-field
theory framework, this gives rise to not only the order pa-
rameter ψ ≡ 〈b̂ j〉 but also another self-consistent parameter
m ≡ −〈σ̂ z

i 〉. The value of m depends on both Ising inter-
action strength J and the atom-photon coupling strength g,
leading to significant variations of m at the critical point, as
observed in Fig. 2. Unlike in the IRLM, the self-consistent
parameter m ≡ −〈σ̂ z

i 〉 is absent in the RLM. As a result,
the phase boundary [Eq. (13)] predicted by the MFT of the
IRLM is significantly different from that of the RLM. In
the IRLM, the competition arises among the photon-hopping
coupling, the on-site Rabi interaction, and the intersite Ising
interaction. The unitary transformation method results reveal
that the competition leads to three types of nonvanishing in-
tersite atom interactions (i.e., σ

y
i σ

y
j , σ z

i σ z
j , and σ x

i σ x
j ) in the

transformed Hamiltonian Ĥ ′
0 [Eq. (16)]. On the contrary, only

a σ x
i σ x

j term exists in the transformed Hamiltonian of the RLM
[25]. The actually distinct obtained results between the IRLM
and the RLM are not only reflected in the dependencies of the
transformation parameters on the k mode [Eqs. (B5), (B6),
(B7), (C7), (C8), and (C9)], but also the emergence of differ-
ent quantum criticality. DSC analysis unveils that the IRLM
belongs to the universality class of the XY Z in Sec. III B,
while the RLM falls into the Ising universality class Ref. [25].

The necessity of the photon-hopping coupling for inducing
the quantum phase transition is further confirmed by consid-
ering the case of the hopping strength t = 0. Due to Elitzur’s
theorem, the global Z2 symmetry related to the parity operator
P̂ = ∏

i σ̂
x
i in the IRLM is always broken, and the quantum

phase transition is absent. The DMRG also shows that the
mean photon numbers as a function of the Rabi interaction
g/J increase gradually. The corresponding process should be
regarded as a crossover behavior rather than a quantum phase
transition in the finite ratio J/ω. Therefore, our research has
uncovered a feature in the IRLM. Despite the fact that the
IRLM stems from the QTFI, we prove that the photon field
alone cannot serve as a global transverse field without the
presence of hopping coupling.
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APPENDIX A: THE TRANSFORMED HAMILTONIAN

The unitary transformation performed on Hamiltonian
Ĥ ′ = eŜ2 eŜ1 ĤIRe−Ŝ1 e−Ŝ2 can be done straightforwardly to the
end. The transformed Hamiltonian is divided into three parts,
Ĥ ′ = Ĥ ′

0 + Ĥ ′
1 + Ĥ ′

2, where Ĥ ′
0 is presented in main text in

Eq. (16), and

Ĥ ′
1 = 1√

N

∑
k

∑
i

g(1 − ξk)τkσ̂
x
i (b̂†

−k + b̂k)e−ikri + J
∑
〈i, j〉,k

iσ̂ y
i σ̂ z

j

βkλk

2
√

N
(b̂†

−k − b̂k)e−ikri , (A1)
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Ĥ ′
2 = J

∑
〈i, j〉

σ̂
y
i σ̂

y
j

[
sinh(X̂i ) sinh(X̂ j ) − κ − η

2

]
+ 2J

∑
〈i, j〉

iσ̂ y
i σ̂ z

j

[
sinh(X̂i ) cosh(X̂ j ) −

∑
k

λkβk

4
√

N
(b̂†

−k − b̂k)e−ikri

]

− J
∑
〈i, j〉

σ̂ z
i σ̂ z

j

[
cosh(X̂i ) cosh(X̂ j ) − κ + η

2
−

∑
k

λ2
kβk

4
(b̂†

kb̂†
−k + b̂kb̂−k − 2b̂†

kb̂k)

]
. (A2)

The operator X̂i and V0 are introduced as

X̂i ≡ 2√
N

∑
k

gξk

ωkτk
(b̂†

−k − b̂k)e−ikri , (A3)

V0 ≡ 1

N

∑
k

g2ξk

ωk
(2 − ξk). (A4)

As we have shown in Eqs. (16), (A1), and (A2), one and
two-photon terms have been included in the Ĥ ′

0 and Ĥ ′
1, and

the parts that remained in the Ĥ ′
2 are the products of three or

a higher number of photon operators in normal ordering with
renormalized coupling strength. When we focus on the ground
and low-lying excited states, it is reasonable to drop Ĥ ′

2 in the
following calculation. It is worth emphasizing that the neglect
of the Ĥ ′

2 does not mean that our result is valid only to the
second order of g. It is obvious to see that the photon-dressing
parameters η and κ , introduced in Eqs. (19) and (20), includes
the infinite order of g. Thus, with the form of Ĥ ′

0 and Ĥ ′
1, the

strong-coupling effects on the ground and low-lying excited
states can be explored to a satisfactory degree.

APPENDIX B: THE UNITARY TRANSFORMATION
IN THE INSULATING PHASE

To simplify the transformed Hamiltonian Ĥ ′ � Ĥ ′
0 + Ĥ ′

1,
the Pauli matrices in Ĥ ′ are treated by the linearized spin-
wave approximation as σ̂ z

i = 2â†
i âi − 1, σ̂ x

i = â†
i + âi, and

iσ̂ y
i = â†

i − âi, with âi and â†
i being bosonic operators [56].

Under this approximation, σ̂ z
i is well approximated as −1, a

constant, in the intersite interaction terms. The transformed
Hamiltonian Ĥ ′ (�Ĥ ′

0 + Ĥ ′
1) can be diagonalized by further

applying a Bogoliubov transformation as Ĥ I = eŜ3 Ĥ ′e−Ŝ3 ,

Ĥ I = EI
g +

∑
k

ωkτ
2
k b̂†

kb̂k +
∑

k

zJβkρ
2
k â†

kâk

+
∑

k

gIk(b̂†
kâk + b̂kâ†

k), (B1)

where the effective coupling strength gIk between the atom
and the photon is

gIk = 2gτk(1 − ξk)ρ−1
k , (B2)

and the ground-state energy of the insulating phase is given
by

EI
g

N
= − 3(κ + η)zJ

4
− NV0 + 1

N

∑
k

ωk

4

(
τ 2

k + τ−2
k − 2

)

+ 1

N

∑
k

zJβk

2
ρ2

k , (B3)

The generator of the Bogoliubov transformation is

Ŝ3 = 1

2

∑
k

ln
(
ρ−1

k

)
(âkâ−k − â†

kâ†
−k), (B4)

with the parameter function ρk given by

ρ2
k = τ 2

k

√
κ + η

βk
+ 4

zJβk

(
V0 − g2

ωk

)
. (B5)

The squeezing function τk is given by

τ 2
k =

√
1 + 4zJg2βkξ

2
k

ω3
k

(B6)

to eliminate the two-photon operators, and the parameter func-
tions ξk is given by

ξk = ωkτ
2
k

ωkτ
2
k + zJβkρ

2
k

(B7)

to eliminate the CRC terms in HI .
By means of the linear transformation, the system reduces

to a diagonalized polariton model:

Ĥ I = EI
g +

∑
k

E±
I (k)d̂†

±kd̂±k, (B8)

where

d̂−k = cos αâk − sin αb̂k, (B9)

d̂+k = sin αâk + cos αb̂k, (B10)

with tan 2α = 2gIk/(ωkτ
2
k − zJβkρ

2
k ).

APPENDIX C: THE UNITARY TRANSFORMATION
IN THE DELOCALIZED SUPERRADIANT PHASE

In this Appendix, we reveal that the IRLM can be simpli-
fied to a polariton model in the delocalized superradiant phase.
As the photon field becomes locally coherent and the atom is
polarized, a static displacement of k = 0 photon mode and a
whole lattice rotation on the atom are required. We perform
a displacement transformation R̂ and a rotation Û = ∏

i Ûi

on Ĥ ′ as Û †eR̂Ĥ ′e−R̂Û . The displacement transformation R̂
is given by

R̂ = −
√

Ngσ0(1 − ξ0)

ω0τ0
(b̂†

0 − b̂0), (C1)

where σ 2
0 = 1 − [(κ + η)zJ]2/(4G2

0). The unitary matrix Ûi

makes the Pauli matrices at every site i rotate as

Û †
i

[
(κ + η)zJ

2
σ̂ z

i + G0σ0σ̂
x
i

]
Ûi = W

2
σ̂ z

i , (C2)
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where W 2 = 4(G0σ0)2 + [(κ + η)zJ]2. Near the critical point,
the mean-field approximation, i.e.,

∑
〈i, j〉 σ̂ z

i σ̂ z
j � z

∑
i σ̂

z
i −

z
2 , the spin-wave approximation, and a Bogoliubov transfor-
mation Ŝ4 are further applied to diagonalize the transformed
Hamiltonian as ĤS = eŜ5Û †eR̂Ĥ ′e−R̂Û e−Ŝ5 ,

ĤS � ES
g +

∑
k

ωkτ
2
k b̂†

kb̂k +
∑

k

Wkθ
2
k â†

kâk

−
∑

k

gSk(b̂†
kâk + b̂kâ†

k), (C3)

where the three-photon and higher-photon operators interac-
tions are ignored, the effective coupling strength gSk between
âk and b̂k is

gSk = 2(κ + η)zJgτk(1 − ξk)/(W θk), (C4)

and the corresponding ground-state energy of the delocalized
superradiant phase is

ES
g = N

(κ + η)zJ

4
− NW − NV0 + NG0σ

2
0

2

+
∑

k

ωk

4

(
τ 2

k + τ−2
k − 2

) +
∑

k

Wkθ
2
k

2
. (C5)

The generator of the Bogoliubov transformation is

Ŝ5 = 1

2

∑
k

ln
(
θ−1

k

)
(âkâ−k − â†

kâ†
−k), (C6)

where the Bogoliubov parameter θk is given by

θ2
k =

√√√√W − [ 2(κ+η)zJ
W

]2[ g2

ωk
ξk(2 − ξk) − V0

]
Wk

. (C7)

The displacement parameter ξk, and the squeezing parameter
τk are determined by

ξk = ωkτ
2
k

ωkτ
2
k + zJβkθ

2
k

, (C8)

τ 2
k =

√
1 + 4zJβkg2ξ 2

k

ω3
k

[
(κ + η)zJ

W

]2

, (C9)

where

Wk = W + zJ (κ − η)γ (k). (C10)

Using the linear transformation,

p̂−k = cos βâk − sin βb̂k, (C11)

p̂+k = sin βâk + cos βb̂k, (C12)

the IRLM reduces to a diagonalized polariton model,

ĤS = ES
g +

∑
k

E±
S (k) p̂†

±k p̂±k, (C13)

where tan 2β = 2gSk/(ωkτ
2
k − Wkθ

2
k ). This linear transforma-

tion reveals the composite nature of the polaritons.
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