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Abstract
Strong polychromatic driving reshapes characteristics of the resonance fluorescence spectrumof a
two-level system. Employing bichromatic driving feildwith a lowbeat-frequency smaller than the
emission rate of the systemwe demonstrate the exotic features of the fluorescence spectrum calculated
by the numerical Floquet-Liouville approach and analyticalmethod. It is found thatfluorescence
spectrumpossesses two broadened sidebands in the place of the Rabi sidebands under certain
conditions.Moreover, the heights andwidths of the sidebands can be controlled by tuning the driving
parameters. The properties of the spectrum is determined by the transitions between the Floquet states
in a rotating frame. The broadened sidebands result from the quasi-continuous quasienergy spectrum
which happenswith steering the beat frequency lower. The present study provides insights into the
Floquet engineering of thefluorescence spectral features with polychromatic excitation fields.

1. Introduction

Resonance fluorescence, radiating fromquantum emitters driven by externalfields, has been extensively studied
theoretically and experimentally. For instance, this phenomenon has been studied in various emitters ranging
from two-level atom [1–3] tomultilevel ones [4–18] subjected to a variety of externalfields ranging from
monochromatic excitation fields to bi- and poly-chromatic ones [19–27]. Apart fromdifferent types of emitters
and externalfields, the investigations have also considered the influence of various environments withwhich the
emitters interact on the resonance fluorescence,e.g. squeezed vacuum [28] and structured reservoir [29–31]. In
addition to the spectroscopy, the study on the resonance fluorescence reveals the nonclassical features of the
fluorescent light including squeezing [32–44], photon correlation [45, 46], quantum interference [11, 47–54],
etc. It is directly relevant to the quantum technologies of indistinguishable single-photon source [55, 56] and
generating nonclassical light [57–59].

In one of the simplest case, i.e. a two-level emitter driven by amonochromatic field, it turns out that the
fluorescence spectrumhas a nontrivial three-peaked structure, i.e. the celebratedMollow triplet, in the strong
driving regimewhere the Rabi frequency of the excitationfield ismuch greater than the spontaneous emission
rate of the emitter [1]. TheMollow triplet has been experimentally validated in the natural atoms [60, 61] as well
as artificial atoms such as semiconductor quantumdots [62, 63] and superconducting circuits [64]. The origin of
three-peaked structure can be understood by using the dressed-atommodel [65, 66], where the emission lines
arise from the transition between the dressed states of the atom and driving field.

When a two-level emitter is driven by a bichromaticfield, thefluorescence spectrum exhibits evenmore
complicatedmultipeaked structures [67–72]. Themultipeaked structure strongly depends on the intensities and
beat frequency of the bichromatic field. Particularly, the fluorescence spectrumhas been studied in the cases of a
bichromaticfieldwith one strong and oneweak component orwith equally strong components. The theoretical
predictions are recently validated in the context of semiconductor quantumdots [73, 74]. So farmuchmore
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attentions are paid to the high beat-frequency cases, namely, the beat frequency of the bichromatic field is greater
than the emission rate of the system.However, the fluorescence spectrum in the case of lowbeat frequencies of
bichromaticfields has not yet been fully explored.

In terms of the doubly dressed-atommodel, Freedhoff and Ficek have considered a special case where a two-
level system is dressed by twofields with equal frequencies and unequal intensities, corresponding to the zero
beat-frequency limit of the bichromatic field, and have found that the energy spectrumof the doubly dressed
atom consists of a ladder of doublet continua, which result in the broadened sidebands in the fluorescence
spectrum [75]. Similar to the doubly dressed-atommodel, the quasienergy spectrumof the bichromatically
driven two-level systemmay become quasi-continuous. The bichromatically driven two-level system is unitarily
equivalent to an effectively periodically driven system in the rotating framewhen the rotating-wave
approximation (RWA) is used [76]. Importantly, the effective driving frequency depends on the beat frequency
of the bichromaticfield. It is thus possible that the quasienergy ladder of the effective system can be quasi-
continuouswhen the beat frequency is vanishingly small. This would result in significantmodification of the
resonance fluorescence spectrum from theMollow triplet as well as themultipeaked structure. Therefore, it is
worthwhile to reveal interesting spectral signatures associatedwith the quasi-continuous quasienergy spectrum
in the lowbeat-frequency regimes.

In this work, we study the resonance fluorescence spectrumof a two-level systemdriven by a classical
bichromaticfieldwith a low beat frequency by using the Floquet-Liouville (FL) approach [77] and analytical
method [78]. The FL numerical results and analytical results are found to be in agreement with each other in the
strong driving regimes.We show that the quasienergy spectrumof the driven system can be quasi-continuous in
the lowbeat-frequency regime. This leads to the formation of the broadened sidebands in the place of the Rabi
sidebands in thefluorescence spectrum.When the Rabi frequencies of the bichromatic field are equal, it is
revealed that exotic line shapes with broadened sidebands, which are vanishing in the high beat-frequency
regime.When the bichromatic field consists of one strong and oneweak component, the line shape somewhat
resembles those found in [75]. The properties of the spectrum are explained as a consequence of the transitions
between the semiclassical Floquet states.

The rest of the paper is organized as follows. In section 2, we introduce themodel and theoreticalmethods,
and present some analytical results. In section 3, we present the comparison between the numerical results and
(semi-) analytical results, and illustrate the spectral features of the resonance fluorescence. In section 4, the
conclusions are drawn.

2.Quasienergy spectrumand resonancefluorescence spectrum

With the RWA, theHamiltonian of the bichromatically driven two-level system in free space is given by (ÿ= 1)

H t H t H H , 1tot F I( ) ( ) ( )= + +
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Here,H(t) describes that a two-level systemwith transition frequencyω0 is coherently driven by a bichromatic
field.Ω is the Rabi frequency of the first component of the bichromatic field, r is the ratio of the Rabi frequency of
the second component of the bichromatic field to that of thefirst one.ω1 andω2 are the frequencies of the
bichromaticfield, respectively. σμ (μ= x, y, z) is the Paulimatrix andσ±= (σx± iσy)/2.HF is the free
Hamiltonian of the vacuum radiationfield described by a set of harmonic oscillatorwith frequencyωk and
creation (annihilation) operator bk

† (bk).HI describes the interaction between the two-level system and the field,
where gk are coupling constants.

To proceed, theHamiltonian is transformed into a frame rotating at the average frequency
21 2( )w w w= + , yielding
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where R t i b b texp k k k2
z( ) [ ¯ ( ) ]†w= + ås , 0w wX = - is the average detuning, andωb= (ω2− ω1)/2 is the half

of the beat frequency of the bichromaticfield.Without loss of generality, we assumeωb> 0 throughout this
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work. In the rotating frame, one notes that H t˜ ( ) is periodic in timewith a periodicityT= 2π/ωb, which allows
us to use the Floquet theory [79].

Using H t HF˜ ( ) + andHI as the free and perturbationHamiltonian respectively, one is able to derive the
master equation for describing the time evolution of the driven two-level systemwith the Born-Markov
approximation [66]. AssumingΩ= ω0, themaster equation is found to be a standard Lindblad form in the
rotating frame,

t
t H t t t t t

d

d
i ,

2
2 , 7( ) [ ˜ ( ) ( )] [ ( ) ( ) ( ) ] ( )r r

k
s s r r s s s r s= - - + -+ - + - - +

where ρ(t) is the densitymatrix of the two-level system, andκ is the spontaneous decay rate. The detailed
derivation of themaster equation can be found in the appendix A. In the following, wefirst discuss the Floquet
quasienergy spectrum associatedwith H t˜ ( ) and then use two differentmethods based on the Floquet theory to
solve themaster equation, and finally derive the resonance fluorescence spectrumwhich is relevant to the
quasienergy spectrumof the driven system.

2.1.Quasi-continuous Floquet quasienergy spectrum
Wediscuss the quasi-continuous quasienergy spectrumof the effective system H t˜ ( ). To elucidate this, we first
consider the dissipationless driven systemwhich satisfies the time-dependent Schrödinger equation,

t
t H t ti

d

d
. 8∣ ( ) ˜ ( )∣ ( ) ( )y yñ = ñ

According to the Floquet theory [79], the solution to the time-dependent Schrödinger equation takes the form
t t u texp i∣ ( ) ( )∣ ( )y eñ = - ña a a , where the indexα=± is used to distinguish the linearly independent solutions,

|uα(t)〉= |uα(t+ T)〉 is the Floquet state, and εα is the real-valued quasienergy. Substituting the formal solution
into equation (8), wefind

H t u t u ti . 9t[ ˜ ( ) ]∣ ( ) ∣ ( ) ( )e- ¶ ñ = ña a a

On solving this equation, onefinds the Floquet states and quasienergies. If |uα(t)〉 is a solutionwith the
quasienergy εα, u t l t u texp il b,∣ ( ) ( )∣ ( )wñ = ña a is also a solutionwith the shifted quasienergy εα,l= εα+ lωb.
Typically, εα is referred to as the quasienergy in the first Brillouin zone [−ωb/2,ωb/2). Thus, it is not difficult to
imagine that the quasienergy spectrummay become quasi-continuous asωb→ 0.

To be concrete, let us consider an exactly solvable caseΞ= 0 and r= 1. In this case, the Floquet state and
corresponding quasienergy can be found as follows:
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where |± 〉 are the eigenstates ofσxwith eigenvalues±1. Clearly, the quasienergy spectrumbecomes quasi-
continuouswith a vanishingly smallωb. In addition, onefinds that for afixed l, the quasienergies are degenerate.
WhenΞ≠ 0 or r≠ 1, the degeneracy of the quasienergies can be lifted and equation (9)may not be exactly
solved by analyticalmethods. Nevertheless, it is feasible to numerically solve equation (9) by using the Fourier
expansion, which converts the differential equations into a linear algebra eigenvalue problemwith an infinite
FloquetHamiltonian [79, 80]. The FloquetHamiltonian can be numerically diagonalizedwith an appropriate
truncation. In the followingwe show that the quasi-continuous quasienergy spectrum ismanifested in the
formation of the broadened sideband in resonance fluorescence spectrum.

2.2. Resonancefluorescence spectrum
Wecalculate the steady-state resonance fluorescence spectrum,which is the Fourier transformof the first-order
correlation function [81]
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where g(τ) is the time-averaged first-order two-time correlation function and w wD = - is the detuning from
the frequency of thefluorescent photon to the average frequency. In this work, we use two differentmethods to
calculate the spectrum. Thefirstmethod is the Floquet-Liouville (FL) approach, which is used to solve themaster
equation directly [77] and to derive the two-time correlation function associatedwith the quantum regression
theorem [81]. This treatment is numerically exact. The details of the FL approach for the presentmodel is
presented in the appendix B. The othermethod is to solve themaster equation in the Floquet picturewith the aid
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of the secular approximation [78], which allows us to derive a physically transparent spectral expression and
provides insights into the spectral features.

We state briefly the analytical treatment. First, we rewrite themaster equation in terms of the Floquet states
|uα(t)〉 and invoke the secular approximation [78], yielding

t
t t

d

d
, 14rel 0( ) ( ) ( )r r= -G + G++ ++
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d
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where ραβ(t)= 〈uα(t)|ρ(t)|uβ(t)〉 is the densitymatrix element in the Floquet picture,Δε+−= ε+− ε− is the
quasienergy difference.Γrel andΓdeph are the relaxation and dephasing rate of the Floquet states, respectively,
andΓ0 is an inhomogeneous termdetermining the steady state of the Floquet states. The explicit formof the
rates are given by
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is the time-averaged transitionmatrix elements between Floquet states. Second, the solution of the equations
above are obtained
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where ss
0 relr = G G++ is the steady Floquet state population. Finally, by using the quantum regression theorem

[81] and the above solutions, we derive the formal spectrum [78]:
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where theDirac-delta functions are the coherent components of the spectrumwhile the Lorentzian ones are the
incoherent components. The basic ingredients such as the linewidths, peak positions, andweights in the above
expression can be calculatedwith the Floquet states |uα(t)〉 and quasienergies εα of the driven system. Therefore,
if the Floquet states and the quasienergies are already known, the spectrum is completely determined.We should
emphasis that the validity of this formal spectrum just depends on the validity of the secular approximation used
in the Floquet picture when the Floquet states and quasienergies are exact. The secular approximation is justified
in the strong driving regime. In general, it is difficult to analytically obtain the exact quasienergies and Floquet
states inmost cases. Nevertheless, they can be computed numerically exactly by the numerical diagonalization of
the FloquetHamiltonian [79, 80].

Provided the analytical Floquet states and quasienergies are known, the analytical spectrum can be derived
by equation (22). Considering an important case, i.e.Ξ= 0 and r= 1, we obtain a very simple analytical
spectrum to illustrate the features of the spectrum. By equation (10), we derive the explicit formof x l,
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where l l,d ¢ is the Kronecker-delta function and Jl( · ) is the Bessel function of the first kindwith integer order l.
Using these elements, equation (11), and the identity J z 1l l
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¥ , we readily derive an analytical spectrum
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where thefirst term representing the central line is the same as that of theMollow triplet [1], and the terms in the
summation are corresponding to the sidebands (l≠ 0) and themodification to the central line (l= 0). Besides,
onefinds that theDirac-delta functions vanish because 1 2ss ssr r= =++ -- , which is actually a consequence of
the secular approximation and can be justified in the strong driving case. Equation (26) provides themanifest
insights into the spectral features in the case ofΞ= 0 and r= 1. First, the spectrum is found to be symmetric
aboutΔ= 0. The symmetry of the spectrum can be attributed to the generalized parity of the driven system
[82–84]. The generalized parity appears onlywhenΞ= 0 and r= 1 and is broken otherwise. Second, there occur
well separatedmultiple sidebands or broadened sidebands which depends on the value ofωb. Ifωb? κ, the
sidebands becomewell separated and amultipeaked spectrum can be expected, which has been theoretically
illustrated and experimentally verified in the previous works [70–74]. However, if the beat frequency is low
enough, i.e.ωb= κ, a great number of Rabi sidebands are generated and not obviously separated from their
neighbors. A broadened sideband comes into being.

WhenΞ= 0 and r≠ 1 orΞ≠ 0 and r≠ 0, we use the numerical diagonalization of the FloquetHamiltonian
to compute the Floquet states and quasienergies which is not available by the analyticalmethod. Then, we also
use equation (22) to compute the spectrum.Hereafter, the obtained spectrum is referred to as the semianalytical
result. In contrast to the case ofΞ= 0 and r= 1, the spectrum is expected to be asymmetric due to the fact that
the generalized parity of H t˜ ( ) is brokenwhenΞ≠ 0 and/or r≠ 1 [82]. On the other hand, similar to the
previous case, the Rabi sidebandsmay be replacedwith broadened sidebandswhenωb= κ.

3.Numerical results and discussions

In this section, we calculate the resonance fluorescence spectrum in the low beat-frequency regime by using both
the numerically exact FL approach and the analyticalmethod. Then, we discuss the influence of the driving
parameters on the spectral features of the incoherent components of the spectrum .

To beginwith, we illustrate how the structure of the fluorescence spectrum evolveswith the variation of the
beat frequency. Figure 1(a)- 1(d) display the incoherent components of the fluorescence spectra calculated by
the FL approach (solid lines) and equation (26) (dotted lines) forΩ= 10κ,Ξ= 0, r= 1, and four values ofωb

arranged in a descending order. The numerically exact results agree well with those obtained by equation (26),
indicating the validity of the latter. It is clear to see that the spectrumpossesses amultipeak structure when the
beat frequency is greater than or comparable with the emission rate [see figure 1(a) and 1(b)].Meanwhile, the
multipeak feature comes to disappear with the decrease ofωb.When the beat frequency ismuch smaller than the
emission rate, the spectrum exhibits two broadened sidebands.Moreover, it turns out that the spectrum is
weakly dependent onωbwhenωb is low enough.

To further illustrate the dependence of the intensities of the central line and the sidebands on the beat
frequency, we use equation (26) to calculate the intensities of spectral components S(Δ) atΔ= 0,Ω, 1.5Ω, 2Ω as
a function of beat frequencyωb forΞ= 0,Ω= 10κ, and r= 1, where S(0) characterizes the central line and {S
(Δ)|Δ=Ω, 1.5Ω, 2Ω} is used to characterize the sideband. The behaviors of these spectral components are

Figure 1. Incoherent resonancefluorescence spectra calculated by the FL approach (solid lines) and equation (26) (dotted lines) for
Ω = 10κ,Ξ = 0, r = 1, and four values ofωb.
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shown infigure 2.Whenωb> κ, the spectral components of the central line and the sidebands exhibit oscillatory
behaviors asωb increases, owing to the property of the Bessel functions. On the contrary, whenωb< 0.1κ, the
oscillations in the central line and sidebands disappear, and the spectrumhardly changes as the beat frequency
decreases below a threshold value, attributed to the asymptotic behavior of the Bessel functions.

Next, we showhow the broadened sideband changes with the variation of rwhenωb= 0.1κ and the other
parameters arefixed. Infigure 3(a), we show the incoherent components of the resonance fluorescence
spectrum S(Δ) as a function ofΔ calculated by the FL approach and equation (22) forΞ= 0,ωb= 0.1κ,
Ω= 10κ, and various values of r ranging from0 to 2.When r= 0, the spectrum is the standardMollow triplet.
As r increases, the central line is almost unchangedwhile the Rabi sidebands are replacedwith the broadened
sidebands. Interestingly, when r ismuch smaller or greater than 1, there are two peaks in each sideband.
However, when r= 1, there is only one peak in a sideband. The spectra in the case of r≠ 1 somewhat resemble
those from a two-level systemdriven by twofields with equal frequency, where onefield is strong and the other is
weak [75]. Nevertheless, we should point out that the spectra in the case of r≠ 1 are slightly asymmetric while
the spectra in the latter case is exactly symmetric. In addition, we note that the numerical FL results and
semianalytical results are in agreementwith each other.

To see how the variation of the Rabi frequency influences the spectral profile, infigure 3(b), we show the
incoherent components of the resonance fluorescence spectrum S(Δ) as a function ofΔ forΞ= 0,ωb= 0.1κ,
r= 1, for different values of the Rabi frequencyΩ.With the increase ofΩ, the sidebands become broadening
while their heights decrease, indicating that the height andwidth can be tuned by the driving strength.We have
performed the numerical calculation for the case of r≠ 1. It turns out that the variation of the sidebands with the

Figure 2. Intensities of spectral components atΔ = 0,Ω, 1.5Ω, 2Ω as a function of beat frequencyωb calculated from equation (26) for
Ξ = 0,Ω = 10κ, and r = 1.

Figure 3. (a) Incoherent resonance fluorescence spectra calculated by the FL approach and equation (22) forΩ = 10κ and various
values of r. (b) Incoherent resonance fluorescence spectrum calculated by the FL approach and equation (26) for r = 1 and various
values ofΩ. The other parameters are set asΞ = 0 andωb = 0.1κ.
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increase ofΩ in the case of r≠ 1 is similar to that in the case of r= 1. The properties of the sidebands can be
completely attributed to theweight factors x l,

2∣ ∣( )
+-
+ and x l,

2∣ ∣( )
-+
+ .

To clarify the observed properties of the sidebands, we carry out numerical calculations concerning on the
weight factors x l,

2∣ ∣( )
+-
+ and x l,

2∣ ∣( )
-+
+ as a function of the index l. Figure 4 displays the results forΞ= 0,Ω= 10κ,

ωb= 0.1κ, and two values of r. Figure 4 illustrates that it is the envelope of theweight factors that results in the
profiles of the sidebands. Let usfirst focus on the case of r= 1, i.e. the bichromaticfield consists of equally
intense components.We have x x J 2 4l l l b,

2
,

2 2∣ ∣ ∣ ∣ ( )( ) ( ) w= = W+-
+

-+
+ , i.e. theweight factors are identical for any l.

Moreover, theweight factors are symmetric about l= 0 and there are twomaxima near l=± 200. Suchmaxima
in turn result in two peaks located near atΔ= lωb in the spectrum.On the other hand, since

J 2 1l l b
2( )wå W ==-¥

+¥ regardless ofΩ, the integrated intensity of sidebands (the area under the sideband curve)
remainsfixed in strong driving regime. The increase inΩ can lead to the decrease inmagnitudes of the Bessel
functions Jl(2Ω/ωb) for afixed smallωb (due to the asymptotic behaviors of the Bessel functionswith
2Ω/ωb? 1). Therefore, thewidth of the sidebands should increase to keep the integrated intensity of the
sidebands invariable. This explains the change of thewidth and height of the sidebands as a function ofΩ
observed infigure 3(b).

Let us analyze the properties of theweight factors for r=0.5, i.e. the bichromaticfield consists of two
components with unequal intensities. First of all, from figure 4(b), we see that x l,

2∣ ∣( )
+-
+ and x l,

2∣ ∣( )
-+
+ are not

identical to each other when r≠ 1. Particularly, x l,
2∣ ∣( )

+-
+ is generally unequal to |x−+,−l|

2, which leads to the

asymmetry of the spectrum. Secondly, the nonzero elements of x l,
2∣ ∣( )

+-
+ and those of x l,

2∣ ∣( )
-+
+ are well separated.

Thirdly, there are two localmaxima in eachweight factors. For x l,
2∣ ∣( )

+-
+ and x l,

2∣ ∣( )
-+
+ , their localmaxima appear

around l=− 100 and l=+ 100, respectively. These properties result in separated red and blue sideband
continua and each continuum consists of two peaks located near atΔ= lωbwhen r< 1.

We examine the influence of the average detuningΞ on thefluorescence spectrum. Figure 5 shows the
incoherent fluorescence spectra forΩ= 10κ,ωb= 0.1κ, r= 1, and various values ofΞ. As themagnitude ofΞ
increases, the height of the central line decreases. This simply reflects the fact that the bichromaticfield is tuned
to be off-resonant with the two-level system for a large |Ξ| and a smallωb. In contrast, the sidebands are slightly

Figure 4.Weight factors x l,
2∣ ∣( )

+-
+ and x l,

2∣ ∣( )
-+
+ versus the index l forΞ = 0,Ω = 10κ,ωb = 0.1κ, and two values of r. In panel (a) only

x l,
2∣ ∣( )

+-
+ is presented because x x J 2 4l l l b,

2
,

2 2∣ ∣ ∣ ∣ ( )( ) ( ) w= = W-+
+

+-
+ . In panel (b) the weight factors are computed from the numerical

diagonalization of the FloquetHamiltonian.
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modifiedwith the variation of the average detuning. The spectra are asymmetric with afinite average detuning.
In addition, although the semianalytical treatment is found to produce qualitatively correct results, its
predictions quantitatively deviate from the numerically exact FL results for a finite average detuning, indicating
that the secular approximation is not well justified in such cases.

The present results demonstrate that there are broadened sidebands in the place of the typical Rabi sidebands
when the beat frequency is sufficiently small. The presented line shapes are different from the standardMollow
triplet from amonochromatically driven two-level system, and also themultipeaked spectrum from a
bichromatically driven two-level systemwith a high beat frequency (ωb? κ). On the other hand, the present
results validate the semianalytical and analytical treatment. This allows us to use the physical picture behind the
analytical treatment to provide a simple physical interpretation of the properties of the spectrum. The physical
picture can be established as follows. An emission line can be viewed as a consequence of the transition between
the Floquet states [78, 85]. For instance, a transition from |u+,l(t)〉 to |u−,0(t)〉 results in the emission line at
Δ=Δε+−+ lωb, which is just the quasienergy spacing of the two Floquet states. Theweight factor x l,

2∣ ∣( )
+-
+

quantifies the contribution of such a transition to the spectrum.With this simple physical picture, it is obvious to
see that a great number of the allowed transitions of that type can lead to a great number of emission lines.
Moreover, if the quasienergy spectrum is quasi-continuous, the positions of such emission lines become dense
enough to form the broadened sideband continuum. From the present analysis, we can see that the broadened
sidebands are themanifestation of the quasi-continuous quasienergy spectrum.

4. Conclusions

In summary, we have studied the resonance fluorescence spectrumof a two-level systemdriven by a bichromatic
fieldwith low beat frequency by using the numerically exact FL approach and analyticalmethod. The results of
the two approaches are found to be consistent with each other in the strong driving regimes.We have illustrated
thatwhen the Rabi frequencies of the bichromatic field are equal and the average detuning vanishes, the
spectrum is symmetric and possesses two broadened sidebands in the place of the Rabi sidebands, which is
different from line shapes in the high beat-frequency regime. The heights andwidths of the sidebands can be
controlled by tuning driving parameters.When the Rabi frequencies of the bichromatic field are unequal, the
spectrum is asymmetric regardless of the average detuning and the spectral profiles are somewhat resemble those
from a two-level systemdriven by twofields with equal frequencies and unequal intensities [75]. The properties
of the spectrum can be understood as the consequence of the transitions between the Floquet states. The
broadened sidebands are relevant to the quasi-continous quasienergy spectrumoccurring in the low beat-
frequency regimes. The present results provide insights into thefluorescent spectral features of a bichromatically
driven two-level system in the lowbeat-frequency regime.

Figure 5. Incoherent resonancefluorescence spectra calculated by the FL approach and equation (22)with the numerical
diagonalization of the FloquetHamiltonian forΩ = 10κ,ωb = 0.1κ, r = 1, and the various values of the average detuningΞ.
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AppendixA.Derivation of themaster equation

In the interaction picture governed by the freeHamiltonian H t H t H0 F( ) ˜ ( )= + , the densitymatrix ttot
I ( )r of

the driven two-level system and the radiation reservoir satisfies the Liouville-vonNeumann equation

t
t H t t

d

d
i , , A.1tot

I
I tot

I( ) [ ( ) ( )] ( )r r= -

where

H t g b t e b t e . A.2
k

k k
t

k
t

I
i ik k( ) [ ( ) ( ) ] ( )†å s s= +w w

+
-

-

The operatorsσ±(t) are given by

t U t U t , A.3( ) ˜ ( ) ˜ ( ) ( )†s s= 

where

U t H

u t u e

exp i d

0 , A.4

t

t

0

i

 ⎡⎣ ⎤⎦
˜ ( ) ˜ ( )

∣ ( ) ( )∣ ( )å
ò t t= -

= ñá
a

a a
e

=

- a

is the time evolution operator of the driven system and  is the time-ordering operator. The second line follows
from the Floquet theory [79] and |uα(t)〉 and εα are the Floquet state and quasienergy for the driven system,
respectively. The equation can be formally integrated and yields

t Hi , d . A.5
t

tot
I

0
I tot

I( ) [ ( ) ( )] ( )òr t r t t= -

Substituting this formal solution into equation (A.1) and taking the partial trace over the degrees of freedomof
the radiationfield, one arrives at

t
t H t H

d

d
Tr , , d , A.6

t
I

F
0

I I tot
I( ) [ ( ) [ ( ) ( )]] ( )òr t r t t= -

where t tTrI
F tot

I( ) ( )r r= andwe have assumed a factorized initial state 0 0 vactot
I I

F,( ) ( )r r r= Ä with ρF,vac the
vacuum state of the radiationfield.

To proceed, we use the Born-Markov approximation, that is,HI(τ) and tot
I ( )r t in the integral are replaced by

HI(t− τ) and ρI(t)⊗ ρF,vac respectively, and the upper limit of the integral is extended to infinity. These
approximations are justified in theweak coupling regime, where the correlation time of the bath is short [66].
Under the Born-Markov approximation, themaster equation at zero temperature is given by

t
t H t H t

d

d
Tr , , d . A.7vac

I
F

0
I I

I
F,( ) [ ( ) [ ( ) ( ) ]] ( )òr t r t r t= - -

¥

The partial trace and integral can be taken explicitly as follows:

H t H t

g e t t t

g e t u x u e t

g e t u x u e t

t t t

I d Tr

d

0 0 d

0 0 d

2
, A.8

vac

k
k

k
k

n
n

n t

k
k

n

n
n

n t

0
F I I

I
F,

0

2 i I

0

2 i

, ,
,

i I

0

2 i

, ,
,

i I

I

k

k b

k b b

[ ] [ ( ) ( ) ( ) ]

( ) ( ) ( )

( ) ∣ ( ) ( )∣ ( )

( ) ∣ ( ) ( )∣ ( )

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )

å

å å

å å

ò

ò

ò

ò
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wherewe have used the expansion follows from the Floquet theory:
t u x u e0 0n n

n t
, , ,

i b( ) ∣ ( ) ( )∣( ) ( )( )s t- = å ñ áa b a ab b
e e w t

-
- - + -a b with x n,

( )
ab
- defined in equation (19). In additionwe have

approximated the integral by

g e d
2

, A.9
k

k
n

0

2 i k b ( )( )ò å t
k

»w e e w t
¥

- + - +a b

which is justifiedwhenΩ= ω0. The other terms in the right-hand side of equation (A.7) can be evaluated
similarly as [I]. Finally, one transforms the obtainedmaster equation back into the rotating frame and derives
equation (7) in themain text.

Appendix B. Floquet-Liouville approach

To solve themaster equation, wefirst rewrite it in amatrix form,

t
t M t ti

d

d
b, B.1

  
( ) ( ) ( ) ( )s s= +

where

t t t t , B.2z
T ( )( ) ( ) ( ) ( ) ( )s s s s= á ñ á ñ á ñ+ -

and

t t zTr , B.3( ) [ ( )] ( ) ( )s s r má ñ = = m m

is the single-time expectation value. The inhomogeneous vector is given by

b i 0 0 . B.4T


( ) ( )k= -

The coefficientmatrix reads

M t

r

r

r r

M

i
2

0
2

e e

0 i
2 2

e e

e e e e i

e , B.5

t t
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t t t t

n
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i i
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i
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b
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⎝

⎜
⎜
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⎞

⎠

⎟
⎟
⎟⎟
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( )( )å

k

k

k

=

-X -
W

+

X - -
W

+

W + -W + -

=

w w

w w

w w w w

w

-

-

- -

=-¥

¥

where the last expression is the Fourier expansion ofM(t) and the Fourier components are defined as follows:

M

i
2

i
2

i

, B.60
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⎜
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⎟
⎟

( )( )

k

k

k

=

-X -

X -

-

M
r

r

0 0
2

0 0
2

0

, B.71

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

( )( ) =

W

-
W

W - W

-

M

r

r

0 0
2

0 0
2

0

, B.81

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

( )( ) =

W

-
W

W -W

+

andM( n) is the 3× 3 zeromatrix when n≠ 0,± 1.
Assuming that

t
t t M t t ti

d

d
, , , B.9( ) ( ) ( ) ( )P ¢ = P ¢

with t t I, 3( )P ¢ ¢ = and I3 being a 3× 3 identitymatrix, the solution to the inhomogeneous equation can be
found as
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t t t t t s s, i , bd . B.10
t

t  
( ) ( ) ( ) ( ) ( )òs s= P ¢ ¢ - P

¢

The key task is to derive t t,( )P ¢ , i.e. the principalmatrix solution of the homogeneous part, which is assumed to
take the following form in accordance to the Floquet theory [77, 79],

t t t t, e , B.11
j

j j
t t

1

3
i j( ) ∣ ( ) ( )∣ ( )( )å f jP ¢ = ñá ¢ l

=

- - ¢

where |fj(t)〉= |fj(t+ T)〉 is a 3× 1 vector and t t Tj j( )∣ ( )∣j já ¢ =á ¢ + is a 1× 3 vector.λj is a complex-valued
exponent. It follows from equation (B.9) that

M t t ti , B.12t j j j[ ( ) ]∣ ( ) ∣ ( ) ( )f l f- ¶ ñ = ñ

*M t t ti . B.13t j j j[ ( ) ]∣ ( ) ∣ ( ) ( )† j l j- ¶ ñ = ñ

The above differential equations can be solved by using the Fourier expansions:

t e , B.14j
n

j
n n ti b∣ ( ) ∣ ( )( )åf fñ = ñ w

=-¥

¥

t e , B.15j
n

j
n n ti b∣ ( ) ∣ ( )( )åj jñ = ñ w

=-¥

¥

where j
n∣f ñand j

n∣ ( )j ñare the nth Fourier component of |fj(t)〉 and |jj(t)〉, respectively. Substituting the
expansions in equations (B.12) and (B.13), the differential equations are then converted into linear algebra
equations

M n I , B.16
k

n k
b n k j

k
j j

n
3 ,[ ]∣ ∣ ( )( ) ( ) ( )å w d f l f+ ñ = ñ

=-¥
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-
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k
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n
3 ,[ ] ∣ ∣ ( )( ) † ( ) ( )å w d j l j+ ñ = ñ

=-¥

¥
-

which correspond to an eigenvalue problemof a nonHermitianmatrix, i.e. j j j∣ ∣f l fñ = ñand
*j j j ∣ ∣† j l jñ = ñ, where |fj〉 and |jj〉 are the right and left eigenvectors, respectively, and is consisting of

infinite numbers of submatrices defined in the brackets and reads

M k j n j k, , , B.18
n k j j
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, , 1

3
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¢
-

¢

where |j, n〉≡ |j〉⊗ |n〉, {|j〉|j= 1, 2, 3} is a set of orthonormal bases for 3-dimensional linear space, and
n n {∣ ∣ }ñ Î is a set of orthonormal bases for infinite-dimensional linear space. The elements of the principal

matrix solution can then be expressed in terms of the eigenvalues and eigenvectors of as follows [77, 79]:

t t j k j

j k j

, e , e , 0

e , e , 0 , B.19
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¢

where

n , B.20j n j b ( )l l wº +¢¢ ¢¢

and j n|f ñ¢¢ and j n|já ¢¢ are the corresponding right and left eigenvectors, respectively. In practice, one numerically
diagonalize to obtain its eigenvalues and eigenvectors with a truncation.

With t t,( )P ¢ at hand, we can easily calculate the single-time expectation. Particularly, in the the steady-state
limit, we have

t t s s j l

t

, d e ,
i

3, 0

e , B.21
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l l t
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w
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¥

where j= 1, 2, 3 correspond toμ=+ ,− , z, respectively. The two-time correlation function can be obtained
from the single-time expectation by the quantum regression theorem [81], which reads
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t t t t t t t t t
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Letting t t t= ¢ + and t ¢  ¥, we can derive a τ-dependent two-time correlation function in the steady-state
limit,
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The Fourier transformof g(τ) leads to the formal spectrum
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where I∞ is an infinite identitymatrix. The spectral components consisting of theDirac-delta functions are the
coherent part of thefluorescence spectrumwhile the second summation in equation (B.24) gives rise to the
incoherent part.
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