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Multiphoton Resonance Band and Bloch–Siegert Shift in a
Bichromatically Driven Qubit

Yiying Yan,* Zhiguo Lü,* Lipeng Chen, and Hang Zheng

The resonance and dynamics of a qubit exposed to a strong aperiodic
bichromatic field are studied by using a periodic counter-rotating hybridized
rotating wave (CHRW) Hamiltonian, which is derived from the original
Hamiltonian with the unitary transformations under a reasonable
approximation and enables the application of the Floquet theory. It is found
that the consistency between the CHRW results and numerically exact
generalized-Floquet-theory (GFT) results in the valid regime of the former
while the widely used rotating-wave approximation breaks down. It is
illustrated that the resonance exhibits band structure and the Bloch–Siegert
shifts induced by the counter-rotating couplings of the bichromatic field
become notable at the multiphoton resonance band. In addition, the CHRW
method is found to have a great advantage of efficiency over the GFT
approach particularly in the low beat-frequency case where the latter
converges very slowly. The present CHRW method provides a highly efficient
way to calculate the resonance frequency incorporating the Bloch–Siegert
shift and provides insights into the effects of the counter-rotating couplings of
the bichromatic field in the strong-driving regimes.

1. Introduction

Quantum systems driven by external fields have attracted great
attention in physics and have been studied extensively in the-
ory and experiments.[1–10] In recent years, this topic has been
renewed in the context of artificial atoms such as semiconduc-
tor quantum dot,[11,12] superconducting circuit,[13–19] nitrogen-
vacancy center,[20,21] and so on. Owing to the controllability of
these artificial atoms, it has been realized experimentally that the
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strong or ultrastrong interaction between
the quantum system and external field,
where the driving strength becomes com-
parable with or even exceeds the transi-
tion frequency of the quantum system.[13,14]

The strong driving results in the invalid-
ity of the widely used rotating-wave ap-
proximation (RWA) and interesting effects
of counter-rotating couplings. As is well-
known, in the Rabi model which describes
a two-level system (qubit) driven by a
monochromatic field, the counter-rotating
coupling is found to cause multiphoton
quantum resonances[2,22] and the Bloch–
Siegert shift which describes that the res-
onance frequency varies with the driving
strength.[1,2,23–26]

The coherent interaction between a two-
level system and a bichromatic field is
an ever-green problem and has attracted
considerable attentions,[27–34] ranging from
dynamics to fluorescence. There are rich
multiphoton resonant processes such as,
the two-level system absorbs n + 1 photons

from one component of the bichromatic field and emits n pho-
tons of the other component with n being a positive integer,
which have been revealed by a number of theoretical studies
based on the Green’s function,[27] generalized Floquet theory
(GFT),[28] and RWA.[29,30] If the RWA is used, it is possible to
reduce the aperiodic Hamiltonian to a periodic one in a proper
rotating frame and thus the Floquet theory can be applied. In
refs. [29, 30] the resonance shifts have been illustrated with the
combination of the Floquet theory and continued fraction in the
absence of the counter-rotating coupling. The GFT allows a treat-
ment beyond the RWAand converts the time-dependent problem
into an eigenvalue problem of an infinite-size generalized Flo-
quet matrix. However, it is difficult to be diagonalized exactly by
analytical methods and one usually carries out perturbation cal-
culation and numerical calculation.[35] In ref. [28], the perturba-
tive analytical calculation has shown that there are Bloch–Siegert
type resonance shifts when the counter-rotating couplings are
taken into account. So far, most studies focus on the cases in
which the beat frequency of bichromatic field is a significant frac-
tion of the driving frequency. Few efforts have been devoted to the
case in which the beat frequency is a vanishingly small fraction
of the driving frequency. In the latter case, the convergence of the
GFT approach may be problematic.
In this work, we postulate a periodic effective Hamiltonian

to study the resonance incorporating the Bloch–Siegert shift
and dynamics of the bichromatically driven qubit. The effective
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Hamiltonian is derived with the unitary transformations under
a reasonable approximation which is valid in a strong-driving
regime of interest and is referred to as the counter-rotating
hybridized rotating wave (CHRW) Hamiltonian. Taking the
advantage of the periodicity of the CHRW Hamiltonian, we are
able to calculate the time-averaged and transient transition prob-
abilities, and resonance frequencies by using the Floquet theory.
When the beat frequency of the bichromatic field is comparable
with its frequencies, we compare the results calculated from the
CHRW Hamiltonian with the RWA results and the numerically
exact GFT results. It turns out that in the valid regime the CHRW
method is highly efficient and satisfactorily accurate in compar-
ison with the GFT method. A comparison between the CHRW
and RWA results reveals the Bloch–Siegert shifts induced by
the counter-rotating couplings. We show that the Bloch–Siegert
shifts become notable at the multiphoton resonance bands and
are found to play an important role in the multiphoton dynami-
cal processes under certain conditions. When the beat frequency
of the bichromatic field is far smaller than its frequencies, we
find that the GFT approach converges very slowly and thus we
compare the transient transition probabilities of the CHRW
and the Runge–Kutta (RK) methods to validate the former. It is
found that the CHRWmethod is capable of efficiently providing
accurate results and has a great advantage over the GFT. The
Bloch–Siegert shift is also illustrated with the CHRWmethod in
the low beat-frequency regimes. The present method provides a
highly efficient way to calculate the resonance frequencies and
insights into the effects of the counter-rotating couplings.

2. Model and Methodology

2.1. Unitary Transformation

TheHamiltonian describing a bichromatically driven qubit reads
(ℏ = 1)

H(t) = 1
2
𝜔0𝜎z +

2∑
j=1

Aj

2
cos(𝜔jt + 𝜙j)𝜎x (1)

where 𝜔0 is the transition frequency of the qubit, 𝜎𝜇 (𝜇 = x, y, z)
is the Pauli matrix, Aj, 𝜔j, and 𝜙j (j = 1, 2) are the amplitude, fre-
quency, and phase of the jth component of the bichromatic field,
respectively. Provided 𝜔1 and 𝜔2 are incommensurate, H(t) is
aperiodic. In the following, we derive a periodic effective Hamil-
tonian for the present aperiodic Hamiltonian.
We transform the Hamiltonian with the unitary

transformation[26]

H′(t) = eS(t)He−S(t) − ieS(t) d
dt
e−S(t)

=
𝜔0

2

{
𝜎z cos

[
2∑
j=1

Aj

𝜔j
𝜉j sin(𝜔jt + 𝜙j)

]

+ 𝜎y sin

[
2∑
j=1

Aj

𝜔j
𝜉j sin(𝜔jt + 𝜙j)

]}

+
2∑
j=1

Aj

2
(1 − 𝜉j) cos(𝜔jt + 𝜙j)𝜎x (2)

with the generator

S(t) = i
2∑
j=1

Aj

2𝜔j
𝜉j sin(𝜔jt + 𝜙j)𝜎x (3)

where 𝜉j ∈ (0, 1) are the parameters to be determined later.
Using the following expansions derived from the generating

function of the Bessel functions of the first kind

cos

(
2∑
j=1

zj sin 𝜃j

)
=

∞∑
k=1

2k−1∑
n=1

2Jn(z1)J2k−n(z2){cos[n𝜃1 + (2k− n)𝜃2]

+ (−1)n cos[n𝜃1 − (2k − n)𝜃2]}

+ J0(z1)J0(z2) + 2
∞∑
n=1

[J2n(z1)J0(z2) cos(2n𝜃1)

+ J0(z1)J2n(z2) cos(2n𝜃2)] (4)

sin
⎛⎜⎜⎝

2∑
j=1

zj sin 𝜃j
⎞⎟⎟⎠ = 2

∞∑
k=1

2k∑
n=1

Jn(z1)J2k+1−n(z2){sin[n𝜃1 + (2k + 1 − n)𝜃2]

−(−1)n sin[n𝜃1 − (2k + 1 − n)𝜃2]}

+2
∞∑
n=1

{J2n−1(z1)J0(z2) sin[(2n − 1)𝜃1]

+J0(z1)J2n−1(z2) sin[(2n − 1)𝜃2]} (5)

where 𝜃j = 𝜔jt + 𝜙j, zj =
Aj

𝜔j
𝜉j, and Jn(zj) are the Bessel functions

of the first kind, we divide the transformedHamiltonian into two
parts according to oscillating behaviors. The first part consists
of the relatively slow-varying terms: the time-independent term,
the lowest beat-frequency term, and the single harmonic terms,
which reads

H′
CHRW(t) =

1
2
𝜔0{J0(z1)J0(z2) − 2J1(z1)J1(z2)

× cos[(𝜔1 − 𝜔2)t + 𝜙1 − 𝜙2]}𝜎z

+𝜔0[J1(z1)J0(z2) sin(𝜔1t + 𝜙1)

+J0(z1)J1(z2) sin(𝜔2t + 𝜙2)]𝜎y

+
2∑
j=1

Aj

2
(1 − 𝜉j) cos(𝜔jt + 𝜙j)𝜎x (6)

This part can be simplified via setting

𝜔0J1(z1)J0(z2) =
A1

2
(1 − 𝜉1) (7)

𝜔0J0(z1)J1(z2) =
A2

2
(1 − 𝜉2) (8)

which determine the values of 𝜉j. By Taylor expansion and sup-
posing that A1 and A2 have the similar order, one readily finds
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that

𝜉1 =
𝜔1

𝜔0 + 𝜔1

[
1 +

𝜔0A
2
1

8(𝜔0 + 𝜔1)3

(
1 + 2r2

(𝜔0 + 𝜔1)
2

(𝜔0 + 𝜔2)2

)]
+ O(A4

1) (9)

𝜉2 =
𝜔2

𝜔0 + 𝜔2

[
1 +

𝜔0A
2
1

8(𝜔0 + 𝜔2)3

(
r2 + 2

(𝜔0 + 𝜔2)
2

(𝜔0 + 𝜔1)2

)]
+ O(A4

1) (10)

where we have defined the ratio

r = A2∕A1 (11)

Recall that sin(𝜔t)𝜎y + cos(𝜔t)𝜎x = ei𝜔t𝜎− + e−i𝜔t𝜎+, where 𝜎± =
(𝜎x ± i𝜎y)∕2. We can rewriteH′

CHRW(t) as

H′
CHRW(t) =

1
2
[J0(z1)J0(z2)𝜔0 − 2Ã0 cos(Δt + 𝛿𝜙21)]𝜎z

+
2∑
j=1

Ãj

4
[ei(𝜔j t+𝜙j)𝜎− + e−i(𝜔j t+𝜙j)𝜎+] (12)

where

Ã0 = 𝜔0J1(z1)J1(z2) (13)

Δ = 𝜔2 − 𝜔1 (14)

𝛿𝜙21 = 𝜙2 − 𝜙1 (15)

Ãj = 2Aj(1 − 𝜉j) (16)

The second part H′
2(t) = H′(t) −H′

CHRW(t) contains the faster
oscillatory terms including the higher beat-frequency terms and
is given by

H′
2(t) = 𝜔0𝜎y

∞∑
k=1

2k∑
n=1

Jn(z1)J2k+1−n(z2){sin[n𝜃1 + (2k + 1 − n)𝜃2]

− (−1)n sin[n𝜃1 − (2k + 1 − n)𝜃2]}

+ 𝜔0𝜎y

∞∑
n=2

{J2n−1(z1)J0(z2) sin[(2n − 1)𝜃1]

+ J0(z1)J2n−1(z2) sin[(2n − 1)𝜃2]}

+ 𝜔0𝜎z

∞∑
n=1

[J2n(z1)J0(z2) cos(2n𝜃1) + J0(z1)J2n(z2) cos(2n𝜃2)]

+ 𝜔0𝜎z

∞∑
k=2

2k−1∑
n=1

(−1)nJn(z1)J2k−n(z2) cos[n𝜃1 − (2k − n)𝜃2]

+ 𝜔0𝜎z

∞∑
k=1

2k−1∑
n=1

Jn(z1)J2k−n(z2) cos[n𝜃1 + (2k − n)𝜃2]

(17)

In spite of the complexity, this part may be reasonably neglected
under certain conditions. Specifically, when Aj∕𝜔j ≈ 1, one has
zj ≈ 1 because of 𝜉j ≈ 1. On recalling the properties of the Bessel
functions of the first kind, we note that the oscillating ampli-
tudes in H′

2(t) become considerably small. On the other hand,
roughly speaking, the fast-oscillating terms of H′

2(t) are respon-
sible for the higher-order multiphoton processes that n +m (m =
3, 5, 7…) photons of one component of the bichromatic field are
absorbed and n photons of the other component are emitted.
Such processes become important for very large driving ampli-
tudes and the near- or on-resonance 𝜔0 ≈ m𝜔j. Therefore, we ne-
glect the contribution of H′

2(t) and retain H′
CHRW(t) as the effec-

tive Hamiltonian.H′
CHRW(t) is referred to as the CHRWHamilto-

nian and is expected to take account of the effects of the counter-
rotating couplings via the renormalized parameters although it
takes a similar form as the RWA Hamiltonian.
To proceed, we transform H′

CHRW(t) into a frame rotating at
the frequency 𝜔1 by the rotation transformation with R(t) =
exp[i(𝜔1t + 𝜙1)𝜎z∕2], yielding

H̃CHRW(t) =
1
2

[
𝛿1 − 2Ã0 cos(Δt + 𝛿𝜙21)

]
𝜎z +

Ã1

4
𝜎x

+
Ã2

4
[ei(Δt+𝛿𝜙21)𝜎− + e−i(Δt+𝛿𝜙21)𝜎+] (18)

where

𝛿1 = 𝜔0J0(z1)J0(z2) − 𝜔1 (19)

Importantly, the effective Hamiltonian is now periodic in time
with a period T = 2𝜋∕|Δ|. In other words, the CHRW method
transforms the aperiodic Hamiltonian with an external bichro-
matic field to a periodic one.

2.2. Floquet Theory and Transition Probability

We calculate the time-evolution operator for H̃CHRW(t) by using
the Floquet theory, which states that the evolution operator takes
the formal form:[2]

Ũ(t, t0) =
∑
𝛾=±

e−i�̃�𝛾 (t−t0)|ũ𝛾 (t)⟩⟨ũ𝛾 (t0)| (20)

where |ũ𝛾 (t)⟩ is the Floquet state and has the same periodicity
as H̃CHRW(t) and �̃�𝛾 is the real-valued quasienergy. The index 𝛾

denotes two linearly independent Floquet states. They satisfy the
following equation

[H̃CHRW(t) − i𝜕t]|ũ𝛾 (t)⟩ = �̃�𝛾 |ũ𝛾 (t)⟩ (21)

Solving the above differential equations can be transformed into
an eigenvalue problem in linear algebra. To this end, we intro-
duce the so-called Sambe space spanned by the Floquet bases
{| ↑⟩⊗ |n⟩, | ↓⟩⊗ |n⟩|n = 0,±1,±2,…}, where | ↑⟩ and | ↓⟩ are
the eigenstates of 𝜎z with the eigenvalues +1 and −1, respec-
tively, and |n⟩ ≡ exp(inΔt) is a Fourier basis and is defined as
an infinite sparse vector with one nonvanishing component that
equals 1 in the nth position numbered from a specified origin.[36]
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The inner product for the Fourier bases is defined as ⟨n|m⟩ =
1
T
∫ T
0 e−inΔt+imΔtdt = 𝛿n,m. In terms of the extended Hilbert space,

Equation (21) is converted into a time-independent matrix equa-
tion

̃CHRW|ũ𝛾⟩ = �̃�𝛾 |ũ𝛾⟩ (22)

where ̃CHRW = H̃CHRW(t) − i𝜕t is the Floquet Hamiltonian and|ũ𝛾⟩ is a vector with the components given by the Fourier coef-
ficients of |ũ𝛾 (t)⟩. The explicit form of the Floquet Hamiltonian
reads

̃CHRW = 1
2

(
𝛿1𝜎z +

Ã1

2
𝜎x

)
⊗ I + 𝜎0 ⊗

∞∑
n=−∞

nΔ|n⟩⟨n|
+ 1
4

∞∑
n=−∞

(Ã2𝜎− − 2Ã0𝜎z)e
i𝛿𝜙21 |n + 1⟩⟨n|

+ 1
4

∞∑
n=−∞

(Ã2𝜎+ − 2Ã0𝜎z)e
−i𝛿𝜙21 |n⟩⟨n + 1| (23)

where 𝜎0 and I are the 2 × 2 and infinite-size identity matri-
ces, respectively. Although ̃CHRW is an infinite-size matrix, it
can be numerically diagonalized with an appropriate truncation.
On diagonalizing ̃CHRW, one obtains the quasienergies and the
Fourier coefficients of the Floquet states. It is sufficient to choose
the quasienergies in the first Brillouin zone (−|Δ|∕2, |Δ|∕2]
and the corresponding Floquet states, which completely deter-
mine the time-evolution operator for the effective Hamiltonian
H̃CHRW(t).
With Ũ(t, t0) at hand, we can obtain the time evolution operator

for the original Hamiltonian, which is related to the former via

U(t, t0) = e−S(t)R†(t)Ũ(t, t0)R(t0)e
S(t0) (24)

Based onU(t, t0), we can calculate the transient transition proba-
bility of finding the qubit in the excited state at time t when it is
in the ground state at time t0,

P(t, t0) = |⟨↑ |U(t, t0)| ↓⟩|2
= Tr[| ↑⟩⟨↑ |U(t, t0)| ↓⟩⟨↓ |U†(t, t0)]

= Tr[R(t)eS(t)| ↑⟩⟨↑ |e−S(t)R†(t)Ũ(t, t0)

× eS(t0)R(t0)| ↓⟩⟨↓ |e−S(t0)R†(t0)Ũ
†(t, t0)]

= 1
2
− 1
4

∑
𝜇,𝜈=z,±

f𝜇(t)f𝜈(t0)
∑
𝜆,𝛾=±

e−i(�̃�𝛾−�̃�𝜆)(t−t0)

× ⟨ũ𝜆(t)|𝜎𝜇|ũ𝛾 (t)⟩⟨ũ𝛾 (t0)|𝜎𝜈|ũ𝜆(t0)⟩ (25)

where

fz(t) = cos

[
2∑
j=1

zj sin(𝜔jt + 𝜙j)

]
(26)

f±(t) = ∓i sin

[
2∑
j=1

zj sin(𝜔jt + 𝜙j)

]
e±i(𝜔1t+𝜙1) (27)

Figure 1. Dimensionless quantity d in Equation (29) versus 𝜔0 for r = 1,
Δ = 0.2𝜔1, and the three values of A1.

The time-averaged transition probability can be given by

P = P(t, t0) =
1
2
(1 − d2) (28)

d =
∞∑

n=−∞

[
Jn(z1)J−n(z2)e

−in𝛿𝜙21Xz
++,n

+ Jn+1(z1)J−n(z2)e
in𝛿𝜙21X+

++,−n

+ Jn+1(z1)J−n(z2)e
−in𝛿𝜙21X−

++,n

]
(29)

where the overline indicates the average over time and

X𝜇

++,n =
1
T ∫

T

0
⟨ũ+(t)|𝜎𝜇|ũ+(t)⟩e−inΔtdt (30)

From Equation (28), one readily notes that the behavior of P to-
tally depends on d. It is important to understand the properties
of d. First, it is simple to prove that d is real-valued by using
the relations Xz

++,−n = [Xz
++,n]

∗ and X+
++,−n = [X−

++,n]
∗. Second, al-

though the phase difference 𝛿𝜙21 appears in Equation (29), it
is found via numerical calculation that d is independent of the
phases and so does P. This is consistent with the previous find-
ing that the phases of the bichromatic field are found to have no
influence on the quasienergies.[37,38] For this reason, we consider
𝜙1 = 𝜙2 = 0 throughout this work. Third, it is evident that when
d = 0, P takes on the maximal value 1/2, which signifies the res-
onance response of the qubit to the external field. Therefore, the
resonance conditions are related to the zeros of d. In addition,
we note that the role of d is actually equivalent to the derivative
of the quasienergy of the GFT with respect to 𝜔0 by comparing
Equation (28) with Equation (A12).
From the above analysis, we note that the resonance frequency

can be simply obtained by solving d = 0 for variable 𝜔0 with the
other parameters being fixed. Figure 1 shows the typical behav-
ior of d as a function of 𝜔0 for r = 1, Δ = 0.2𝜔1, and the three
values of A1. We set 𝜔1 as unit hereafter. Interestingly, we find
that in general the sign of d changes around its zeros as the vari-
ation of 𝜔0. This property allows us to efficiently find the zeros
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Figure 2. Time-averaged transition probability P versus 𝜔0 for Δ = 0.2𝜔1, two values of r, and two values of A1. a) r = 1 and A1 = 0.5𝜔1. b) r = 1 and
A1 = 𝜔1. c) r = 0.5 and A1 = 0.5𝜔1. d) r = 0.5 and A1 = 𝜔1.

of d, namely, the resonance positions, by using the bisection al-
gorithm.
For comparison and to distinguish the effects of the counter-

rotating couplings from the CHRW Hamiltonian, let us revisit
the widely used RWA Hamiltonian. For the present bichro-
matically driven qubit, the RWA Hamiltonian is obtained by
neglecting the counter-rotating couplings

∑2
j=1

Aj

4
[ei(𝜔j t+𝜙j)𝜎+ +

e−i(𝜔j t+𝜙j)𝜎−] in Equation (1). Similarly, one can transform the
RWAHamiltonian into the frame rotating at frequency 𝜔1, yield-
ing

H̃RWA(t) =
1
2
(𝜔0 − 𝜔1)𝜎z +

A1

4
𝜎x +

A2

4
[ei(Δt+𝛿𝜙21)𝜎−

+ e−i(Δt+𝛿𝜙21)𝜎+] (31)

Clearly, the transformed RWA Hamiltonian is periodic in time
and thus the Floquet theory can be applied. In the previousworks,
the RWA Hamiltonian is usually treated in the frame rotating
at the average frequency 𝜔 = (𝜔1 + 𝜔2)∕2.[29–32] Interestingly, in
such a frame, the mathematical form of the RWA Hamiltonian
becomes the same as that of the Rabi model when A1 = A2,
that is, r = 1. Nevertheless, for the numerical calculation, Equa-
tion (31) is preferred since the convergence is much faster. Al-
though the RWA leads to the simplified treatment based on the
Floquet theory, it neglects the counter-rotating couplings which
induce resonance shifts and complicated beat behavior.

3. Results and Discussions

In this section, we study the resonance behaviors of the bichro-
matically driven qubit by using the CHRW, RWA, GFT, and RK
methods. The codes for generating the data can be found in ref.
[39].

3.1. High Beat-Frequency Case

We first consider a relatively high beat-frequency case, that is,|Δ| ≈ 0.1𝜔1. In this case, the GFT method is chosen to be the
benchmark, which is numerically exact. The details of the GFT
method are presented in the Appendix. In the following, we first
examine the performance of the CHRW and RWA methods and
then study the Bloch–Siegert shifts as well as their influence on
multiphoton dynamical processes.
To examine the accuracy of the CHRW and the RWA meth-

ods on the predictions of the resonance, we calculate the time-
averaged transition probability P as a function of 𝜔0 for the
fixed 𝜔1 and 𝜔2. The difference of the two frequencies is set
as Δ = 0.2𝜔1. Figure 2 shows the resonance curves obtained
from the three methods for the two values of r and the two val-
ues of A1. We find that the CHRW results (solid lines) are in
good agreement with the GFT results (dashed lines) for both val-
ues of r even if A1∕𝜔1 = 1. In fact, it is straightforward to nu-
merically verify that for the considered values of A1 and r, the

Adv. Quantum Technol. 2023, 6, 2200191 © 2023 Wiley-VCH GmbH2200191 (5 of 9)
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Figure 3. Contour plot of time-averaged transition probability P versus 𝜔0 and A1 calculated from the GFT method for Δ = 0.2𝜔1 and two values of r.
a) r = 1 and b) r = 0.5. The solid lines are the CHRW results and indicate the resonance positions (P = 1∕2). The dashed lines are the RWA resonance
positions.

CHRW method is also accurate when the value of |Δ| is neither
too large nor too small, that is, |Δ|∕𝜔1 ≈ 0.1. The present find-
ings lead to the conclusion that the CHRW Hamiltonian is ca-
pable of predicting accurate resonance positions of the bichro-
matically driven qubit when A1∕𝜔1 ≈ 1, r ≈ 1, |Δ| ≈ 0.1𝜔1, and
𝜔0 ≈ 𝜔1. On the other hand, when comparing the RWA results
with the CHRW results, one readily finds that they are inconsis-
tent on three aspects. First, there are shifts between the RWA and
CHRW resonance peaks. Obviously, these shifts result from the
counter-rotating couplings. In this sense, they are similar to the
Bloch–Siegert shift found in the Rabi model.[1,2] Therefore, the
shifts between the RWA and the CHRW peaks are referred to
as the Bloch–Siegert shifts. In addition, Figure 2 indicates that
the larger the driving amplitudes are, the larger the shifts be-
tween the RWA and CHRW resonance peaks become. Second,
the RWA resonance curve is symmetric about the average fre-
quency 𝜔 (𝜔 = 1.1𝜔1 in the present case) provided r = 1 while
the CHRW and GFT curves do not. The symmetry of the RWA
result can be simply attributed to the fact that the RWA Hamil-
tonian has the same mathematical form as the Rabi model in
the frame rotating at the average frequency 𝜔 as long as r = 1.
Clearly, if r ≠ 1, namely, the intensities of the two components
of the bichromatic field are not equal, one finds that the RWA
curves are also apparently asymmetric as those of the CHRW
and GFT. Third, the RWA resonance width may be quite dif-
ferent from those of CHRW and GFT (see the widths of reso-
nance peaks near 𝜔0 = 0.4𝜔1 in Figure 2b). This reflects that the
counter-rotating coupling has a significant influence on the mul-
tiphoton resonance width.
Next, we move to illustrate the Bloch–Siegert shifts as the vari-

ation of the driving amplitudes, which reflects the deviation be-
tween the RWA and exact resonance positions. To this end, we
first calculate the time-averaged transition probability as a func-
tion of 𝜔0 and A1 by using the GFT method for Δ = 0.2𝜔1 and
two values of r. Figure 3 shows the contour plots of the GFT nu-
merical results, providing the insights into the resonance posi-
tions and widths of the bichromatically driven qubit. It is clear to

see that in the 𝜔0-A1 plane, the resonance peaks form the sepa-
rated resonance bands, that is, the resonance exhibits band struc-
ture. These bands correspond to either single-photon or multi-
photon processes, which can be characterized by the resonance
positions in the weak-driving limit, namely, the endpoints of the
band. In general, the band that connects 𝜔0 = (n + 1)𝜔1 − n𝜔2
and 𝜔0 = (n + 1)𝜔2 − n𝜔1 as A1 → 0 is the (2n + 1)-photon res-
onance band, where the qubit absorbs n + 1 photons from one
component of the bichromatic field and emits n photons of the
other component. Although 2n + 1 photons participate at these
resonances, there is only one net photon absorbed. Besides, the
maxima (P = 1∕2) at the bands are the resonance positions. In
the band gaps, the resonance is forbidden.
We use the CHRW and RWA methods to calculate the reso-

nance positions of the four bands ranging from the single- to
seven-photon resonance, which are represented by solid lines
and dashed lines in Figure 3, respectively. When A1∕𝜔1 > 0.2,
there are significant Bloch–Siegert shifts between the RWA and
CHRWresonance positions at themultiphoton resonance bands.
However, whenA1∕𝜔1 < 0.2, the RWA resonance positions agree
with the CHRW ones, indicating that the Bloch–Siegert shifts
are negligible and the RWA may be a good approximation when
the driving is sufficiently weak. The present results suggest that
the Bloch–Siegert shifts become notable at the multiphoton res-
onance bands and in the strong-driving regime.
We now illustrate the influence of the Bloch–Siegert shifts on

the dynamics of the bichromatically driven qubit. As is known,
at the resonance where the magnitude of Bloch–Siegert shift is
comparable with the resonance width, the transient transition
probability can be dramatically different whether the RWA is
used or not.[40] In Figure 3, we see that such situation may occur
at the multiphoton resonance band. In Figure 4 we use the three
methods to calculate the transient transition probability P(t, t0)
as a function of t for t0 = 0, A1 = 0.5𝜔1, r = 1, and two values of
𝜔0. We first consider 𝜔0 = 1.436881𝜔1, which corresponds to the
abscissa of the maximum of the CHRW curve near 𝜔0 = 1.4𝜔1
in Figure 2a and is a five-photon resonance frequency (see Fig-

Adv. Quantum Technol. 2023, 6, 2200191 © 2023 Wiley-VCH GmbH2200191 (6 of 9)

 25119044, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202200191 by Shanghai Jiaotong U

niversity, W
iley O

nline L
ibrary on [17/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 4. Transient transition probability P(t, t0) versus 𝜔1t for t0 = 0,
A1 = 0.5𝜔1, r = 1,Δ = 0.2𝜔1, and two values of𝜔0. a)𝜔0 = 1.436881𝜔1 is
a five-photon resonance frequency. b) 𝜔0 = 1.179967𝜔1 is a three-photon
resonance frequency.

ure 3a). Figure 4a shows that the RWA dynamics is completely
different from the CHRW dynamics while the latter agrees with
the GFT. Such difference can be attributed to the fact that the
Bloch–Siegert shift leads to that the resonance frequency of the
CHRW Hamiltonian becomes a “far” off-resonant frequency of
the RWA Hamiltonian when the Bloch–Siegert shift quantifying
the detuning between the RWA and CHRW resonance frequen-
cies is comparable with the RWA resonance width.[40] Moreover,
one can verify that the essential difference between the RWA
and CHRW (GFT) dynamics arises at other CHRW resonance
positions as long as the Bloch–Siegert shift is comparable with
the resonance width. On the contrary, if the Bloch–Siegert shift
is much smaller than the resonance width, one can expect that
there is no essential difference between the RWA and CHRW
(GFT) dynamics. To verify this, we consider 𝜔0 = 1.179967𝜔1,
which is the abscissa of the maximum of the CHRW peak
near 𝜔0 = 1.2𝜔1 in Figure 2a and is a three-photon resonance
frequency. Figure 4b shows that there is no essential difference
between the RWA and CHRW (GFT) dynamics. Nevertheless,
we note that the RWA method is unable to capture accurate beat
behavior as the CHRWmethod. The present results confirm that
the Bloch–Siegert shift can cause essential difference between
the RWA and CHRW (GFT) in the present bichromatically
driven qubit under the multiphoton resonance condition where
the Bloch–Siegert shift is comparable to the resonance width.
In addition, the CHRW method is found to predict not only
accurate resonance positions but also accurate dynamics.

3.2. Low Beat-Frequency Case

In this section, we discuss the performance of the CHRW
method in the relatively low beat-frequency cases, that is, |Δ| ≪

Table 1. Valid regimes of the CHRW method for 𝜔0 ≈ 𝜔1, r ≈ 1, and var-
ious values of Δ.

|Δ| ≈ 10−1𝜔1 |Δ| ≈ 10−2𝜔1 |Δ| ≈ 10−3𝜔1 |Δ| ≈ 10−4𝜔1

A1 ≈ 𝜔1 A1 ≈ 0.3𝜔1 A1 ≈ 0.2𝜔1 A1 ≈ 0.1𝜔1

Figure 5. Transient transition probability P(t, t0) versus 𝜔1t calculated
from the RK, CHRW, GFT, and RWAmethods for t0 = 0, A1 = 0.2𝜔1, r = 1,
Δ = 0.005𝜔1, and 𝜔0 = 𝜔1. The inset shows the zoom of curves in the in-
terval [1350,1400]. The number in the legends indicates the dimension of
the truncated Floquet or generalized Floquet matrices.

𝜔1. In such cases, we run into difficulty to examine the accuracy
of the CHRWmethod by comparing its time-averaged transition
probability with that of the GFT. The GFT approach is found to
be difficult to converge when |Δ| ≪ 𝜔1, r ≈ 1, and 𝜔0 ≈ 𝜔1. Con-
sequently, we compare the transient transition probability calcu-
lated by the CHRWmethod with that of the RKmethod, which is
used to directly integrate the time-dependent Schrödinger equa-
tion. We find that the CHRWmethod is valid even in the vanish-
ingly small beat-frequency case.We summarize the valid regimes
of the CHRWmethod for the four magnitudes of |Δ| in Table 1.
It turns out that the smaller the |Δ| is, the smaller amplitudes the
CHRW is valid for. Besides, the size of the truncated Floquet ma-
trix of the CHRWHamiltonian also increases for convergence as|Δ| decreases. Typically, when |Δ| ≈ 0.1𝜔1, a 62 × 62 truncated
Floquet matrix is sufficient to guarantee the convergence. How-
ever, when |Δ| ≈ 10−4𝜔1, a 2082 × 2082 truncated Floquet matrix
is needed for convergence. Nevertheless, we find that the CHRW
method has a great advantage over the numerically exact GFT
approach in such low beat-frequency regimes.
To exemplify the advantage of the CHRWmethod, in Figure 5,

we show the transient transition probabilities calculated from the
RK, CHRW, GFT, and RWA methods for A1 = 0.2𝜔1, r = 1, Δ =
0.005𝜔1, and 𝜔0 = 𝜔1. We emphasis that even for A1 = 0.2𝜔1, a
16562 × 16562 truncated generalized Floquet matrix is needed
to get the accurate dynamics and it takes a few hours CPU time
in a modern PC. On the contrary, in the CHRW treatment,
a 142 × 142 truncated Floquet matrix is sufficient to get the
converged and accurate result and it just takes few seconds CPU
time. The CHRW is not only as efficient as the RWA treatment
but also captures the correct beat behaviors missed in the latter.
In general, one finds that the smaller the |Δ| is, themore difficult
the GFT approach is to converge even for a relatively small ampli-
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Figure 6. Time-averaged transition probability P versus 𝜔0 for Δ =
0.005𝜔1, A1 = 0.2𝜔1, and r = 1.

tude and r ≈ 1, which can be attributed to the poor convergence
of the two-mode Fourier series used in the GFT approach.
To show the Bloch–Siegert shift in the low beat-frequency case,

we calculate the time-averaged transition probabilities by using
the CHRW and RWA methods. Figure 6 shows P as a function
of 𝜔0 for Δ = 0.005𝜔1, A1 = 0.2𝜔1, and r = 1. We note that the
line shapes of P in Figure 6 are similar to those in Figure 2a.
Besides, the spacing between the resonance peaks in the small Δ
case is less than that in the large Δ case. In other words, for the
small Δ, the resonance bands become dense in the 𝜔0-A1 plane.
This is not favorable for studying the resonance shifts.

4. Conclusions

In summary, we have studied the resonance and dynamics of a
qubit strongly driven by a bichromatic field beyond the RWA. A
periodic CHRW Hamiltonian has been derived from the aperi-
odic original Hamiltonian based on the unitary transformations
and it enables us to accurately calculate the main resonance po-
sitions and dynamics by making use of the Floquet theory. When
the beat frequency is relatively large, in comparison with the GFT
results, we have shown that the CHRW method provides an ac-
curate description of the main resonance and dynamics of the
bichromatically driven qubit over a strong-driving regime where
the RWA breaks down, suggesting that the effects of the counter-
rotating couplings of the bichromatic field have been properly
incorporated in the CHRW Hamiltonian in its valid regime. Be-
sides, the CHRWmethod has amuch higher efficiency in numer-
ical calculation than the GFT method. Using the CHRW, RWA,
andGFTmethods, we have illustrated the Bloch–Siegert shifts in-
duced by the counter-rotating couplings of the bichromatic field.
Such shifts become notable at the multiphoton resonance bands
and in the strong-driving regimes. Moreover, we found that a sit-
uation where the magnitude of the Bloch–Siegert shift becomes
comparable with the resonance width can occur at the multipho-
ton resonance band. In such a situation, the RWA and CHRW
theories yield essentially different dynamics at the CHRW res-
onance positions because of the Bloch–Siegert shift. When the
beat frequency is relatively small, we find that the CHRW is ca-
pable of efficiently predicting accurate results for the amplitudes
comparable with the driving frequency while the GFT approach
becomes difficult to converge.

The present CHRW method offers insights into the effects of
the counter-rotating couplings of the bichromatic field on the res-
onance and dynamics in the strong-driving regime. In addition, it
may be useful in the quantum battery researches with the strong
bichromatic field, similar to the monochromatic case.[41–43]

Appendix A: Generalized Floquet Theory

According to the GFT, the time-evolution operator for the bichromati-
cally driven two-level system under study takes the form[35]

U(t, t0) =
∑
𝛾=±

|u𝛾 (t)⟩⟨u𝛾 (t0)|e−i𝜀𝛾 (t−t0) (A1)

where 𝜀𝛾 is a real-valued quasienergy and |u𝛾 (t)⟩ possesses a two-mode
Fourier expansion,

|u𝛾 (t)⟩ = ∞∑
n,m=−∞

ei(n𝜔1+m𝜔2)t|u(n,m)
𝛾 ⟩ (A2)

From the time-dependent Schrödinger equation, one simply obtains that
𝜀𝛾 and |u𝛾 (t)⟩ satisfy the following equation:
[H(t) − i𝜕t]|u𝛾 (t)⟩ = 𝜀𝛾 |u𝛾 (t)⟩ (A3)

In the present formalism, themain task is to calculate the quasienergies
and the two-mode Fourier coefficients of the unknown vectors |u𝛾 (t)⟩. To
this end, we expand the Hamiltonian in terms of two-mode Fourier series,

H(t) =
∞∑

n,m=−∞
H(n,m)ei(n𝜔1+m𝜔2)t

= H(0,0) +H(1,0)ei𝜔1t +H(−1,0)e−i𝜔1t

+ H(0,1)ei𝜔2t +H(0,−1)e−i𝜔2t (A4)

where

H(0,0) = 1
2
𝜔0𝜎z (A5)

H(±1,0) = 1
4
A1e

±i𝜙1𝜎x (A6)

H(0,±1) = 1
4
A2e

±i𝜙2𝜎x (A7)

and H(n,m) = 0 otherwise. To proceed, we substitute Equations (A2) and
(A4) into (A3), we derive the equations for the two-mode Fourier coeffi-
cients and quasienergy,

∞∑
n,m=−∞

[H(k−n,l−m) + (n𝜔1 +m𝜔2)𝛿n,k𝛿l,m]|u(n,m)
𝛾 ⟩ = 𝜀𝛾 |u(k,l)𝛾 ⟩ (A8)

These equations can be reformulated in a matrix form

F2|u𝛾 ⟩ = 𝜀𝛾 |u𝛾 ⟩ (A9)

Here, F2 is the two-mode Floquet Hamiltonian and is given by

F2 = 1
2
𝜔0𝜎z ⊗ I⊗ I + 𝜎0 ⊗

∞∑
n=−∞

n𝜔1|n⟩⟨n|⊗ I

+ 𝜎0 ⊗ I⊗
∞∑

m=−∞
m𝜔2|m⟩⟨m|

Adv. Quantum Technol. 2023, 6, 2200191 © 2023 Wiley-VCH GmbH2200191 (8 of 9)
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+
A1
4
e−i𝜙1𝜎x ⊗

∞∑
n=−∞

|n⟩⟨n + 1|⊗ I

+
A1
4
ei𝜙1𝜎x ⊗

∞∑
n=−∞

|n + 1⟩⟨n|⊗ I

+
A2
4
e−i𝜙2𝜎x ⊗ I⊗

∞∑
m=−∞

|m⟩⟨m + 1|
+

A2
4
ei𝜙2𝜎x ⊗ I⊗

∞∑
m=−∞

|m + 1⟩⟨m| (A10)

|u𝛾 ⟩ is a column vector whose components are the two-mode Fourier co-

efficients |u(n,m)
𝛾 ⟩. With an appropriate truncation, we can numerically di-

agonalize the two-mode Floquet Hamiltonian to obtain the quasienergies
and the corresponding eigenvectors |u𝛾 ⟩. These can be used to calculate
the transient and time-averaged transition probabilities[28,35]

P(t, t0) =
||||||

∞∑
k,l=−∞

ei(k𝜔1+l𝜔2)t⟨↑, k, l|e−iF2(t−t0)| ↓, 0, 0⟩||||||
2

(A11)

P =
∞∑

k,l,n,m=−∞

∑
𝛾=±

|⟨↑, k, l|u𝛾 ,n,m⟩⟨u𝛾 ,n,m| ↓, 0, 0⟩|2
= 1

2

[
1 − 4

(
𝜕𝜀𝛾

𝜕𝜔0

)2
]

(A12)

where |u𝛾 ,n,m⟩ is the eigenvector of F2 associated with the shifted
quasienergy 𝜀𝛾 ,n,m ≡ 𝜀𝛾 + n𝜔1 +m𝜔2 and | ↑ (↓), k, l⟩ ≡ | ↑ (↓)⟩⊗ |k⟩⊗|l⟩.
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