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Non-Markovian dynamics of a double quantum dot charge qubit with static bias
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We have studied the dynamics of charge qubit with the static bias by a perturbation treatment based on
unitary transformations. The approach can be practiced for various forms of the spectral density and the usual
Ohmic and piezoelectric spectra are used in our calculations. Analytical results of the quantum dynamics,
described by the population inversion P(z), are obtained together with the damping rate and the oscillation
frequency. We find that a weak coupling of the qubit to the environment leads to a higher coherence oscillation
frequency and a longer coherence time. For a fixed tunneling between the double quantum dots, the finite bias

enhances the oscillation frequency effectively but its effect on the damping rate is relatively small. This is a

possible way to maintain quantum coherence.
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I. INTRODUCTION

Since the quantum algorithms were proposed which can
be used to solve certain computational problems much more
efficiently than classical ones,! attention has been devoted to
the physical implementation of quantum computation.
Barenco et al.”> discussed two possible physical realizations
of the quantum controlled-NOT gate, one based on Ramsey
atomic interferometry and the other on the selective driving
optical resonance. Bandyopadhyay et al.? presented two dif-
ferent proposals for implementing mathematically reversible
and dissipationless logic in nanoelectronic systems. Nano-
fabrication technology now allows us to design artificial at-
oms (quantum dots) and molecules (coupled quantum dots),
in which atomic (molecular) -like electronic states can be
controlled with external gate voltages.*~® The localized low-
lying states of quantum dots (QDs) can be used to realize the
reversible quantum logic gate NOT.” Balandin and Wang®
proposed an implementation of the quantum controlled-NOT
gate on the basis of coupled asymmetric quantum dots and
Fedichkin et al.’ proposed that symmetrical semiconductor
quantum dots with the help of the voltage on the electrodes
can carry out controlled-NOT operation. As the quantum sys-
tem always interacts with its environment, quantum decoher-
ence in the system is usually the most serious obstacle in
producing efficient quantum circuits.'®'> For this reason, a
detailed understanding of quantum decoherence in open sys-
tem and the possibility of implementing sufficiently large
number of coherent manipulation within the characteristic
coherence time of qubits are crucial for future actual imple-
mentation of quantum nanostructures for quantum informa-
tion technology.

To build a quantum computer, the first step is the realiza-
tion of the basic device units for quantum information pro-
cessing called quantum bit (qubit), then a full set of basic
logic operation. Within the last decade, various schemes have
been proposed and many of them have even been realized,
such as superconducting flux qubit'3'® and solid charge
qubit.>®!7 Among them, the gate voltage controlled semicon-
ductor charge qubit has the potential advantages of being
arbitrarily scalable to large system and compatible with the
current microelectronics technology. Recently, Hayashi et
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al.'® have successfully realized coherent manipulation of
electronic state in double-dot system embedded in a
GaAs/AlGaAs heterostructure containing two-dimensional
electron gas. The damped oscillation of population inversion
is observed in the time domain and the dependence of deco-
herence rate T;l on the energy offset € is obtained. In another
similar experiment,'® the base material used for the charge
qubit is an industry-standard silicon-on-insulator wafer with
a phosphorus-doped active region and all operations (initial-
ization, manipulation, and measurement) are achieved by ca-
pacitively coupled elements. In this experiment, the static
bias is controlled by the change of applied gate voltage.
These experiments lead to a problem of investigation of what
is the effect of the static bias on the tunneling current of the
charge qubit.

Some analytical methods are used to study the dynamics
of biased spin-boson model, such as the conventional
perturbation theory,”® noninteracting blip approximation,’®
Bloch-type quantum rate equation,”’ and combining
(non-)Markovian master equations with  correlation
functions.?? In this work, we study the coherent non-
Markovian dynamics of biased spin-boson model by means
of a perturbation treatment based on unitary transformations.
A simple analytical expression for the population inversion
or tunneling current is presented and the coherent-incoherent
transition point «, for finite bias is determined for Ohmic
bath. Furthermore, decoherence induced by the piezoelectric
phonons is investigated in some detail and possible means
for maintaining quantum coherence are discussed.

The paper is organized as follows: In Sec. II, we introduce
the model Hamiltonian for static biased spin-boson model
and solve it in terms of a perturbation treatment based on
unitary transformations. The results and discussions are in
Sec. III. Finally, the conclusion is given in Sec. IV.

II. THEORY

The model we study is the static biased spin-boson
Hamiltonian,?

H=H,+H,+H,. (1)

H, is the Hamiltonian of the system, H, the bosonic environ-
ment, and H; their interaction that is responsible for decoher-
ence.
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=—Ao/2+e0./2, (2)
H,= 2, wbiby, (3)
k
1 +
k

with o; (i=x,y,z) being Pauli matrices. A and & describe the
tunneling coupling and the energy offset (static bias) be-
tween the two charge states, respectively. b; (b)) and wy are
the creation (annihilation) operators and frequency of the bo-
son with wave vector k. In charge qubit, boson environment
mainly means phonons and g; is the electron-phonon cou-
pling strength. In this work, we discuss the electron transport
in charge qubit in zero temperature case. The effect of bath is
fully described by the spectral density:

J(w) =2 gidw- ). (5)
k

In order to take into account the spin-boson correlation,
we apply the following two unitary transformations. First,
we make a displacement to all boson modes,

8
bk=ak— 2(:; gy, (6)
k

where oy is a constant and will be determined later. Then, we
apply a canonical transformation, H' =exp(S)H exp(—S) with
the generator?*?>

E 8k§k

e k ap)(o, = 0p). ™)

&, is a k-dependent function. After transformation, we de-
compose the transformed Hamiltonian H' into three parts,

H'=H)+H|+H), (8)
where
, 1 e'o, i
Hy=——-nAo+——+ 2 Wpaay
2 2
2 to fk(2 &)+ E _0'0(1 - fk)z 9
Kk FWk 4oy
! 1 T
H, = EE g1 =&)(a; +ap) (o, — ap)
k
A
—170' fk(ak (10)
and
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H)=-

8
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k Wk
with
gz
n=exp<—2 —"zéi) (12)
K 20
and
gz
e’ =g - 700, T=2—k(1—§k)2. (13)
K Wk

Obviously, H|, can be solved exactly because the spin and
bosons are decoupled. Then, we diagonalize H, by a unitary
matrix U,

U=<“ v ) (14)

U —u

with

1 1
u=-—=(1-sin )%, v=-72=(1+sin )" (15)
V2 V2

and sin f=¢'/W with W=(g'?+7?A%)"2. The diagonalized
H' is

H'=U*H'U=Hy+Hj, (16)

with

U 1
Hy=- EW(Tz + E wkaltak E _4 &2-¢&)
PRI

3 fk o1 - &) (17)
k Wy

and

=—_28k(1—§k (ak+ak)( <T+<To>
+7]—A0'2 (1-&)(al +ay)
W xk 8k K\ Ay k

A 8
+ 170'),2 —kfk(a}: —ay).
K Wk

gy and gk’

& g Wy
gy=—_—_ =
’ (l)k+””

(18)

are determined in such a way that
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g1 8iék
H= _82 —(az +ay)(l-0,)
270 o

1 .
+ —nAE gk—gk[a}c(ax +ioy) + a0, —ioy)] (19)
2 ko @k

and H'|g)=0. This is the key point in our approach. We note

that
r
8(1 + —)
w

[1+5)
g'=¢gll+—], sinf=——. (20)

w w
The angle 6 is in the range of —m/2< @< m/2 and the sign
of sin @ is the same as static bias. If 6=0, the model returns
to zero bias case. H is of the order of 7g;&/w; or higher
and is negligible.

We denote the ground state of Hy as | g): ls)[{0.}) and the
lowest excited states as
are eigenstates of o, (o,|s|)= |s1) o, —|s2>) and |{nk})
is the phonon state with n phonons for mode k. In the
ground and the lowest excited states, it is easy to
check that ({0.}|(s,|H|g)=0, ({1,}/(s|H]|g)=0, and
{0 (sl HY s 1) = nAgré/ oy Thus, we can diagonalize
H" for these lowest-lying states through the following
transformation:>*

s:)[{0}) = 2 x(E)|E), (21)
E

|Sl>|{1k}> = 2 )’k(E)|E>, (22)
E

|E) = x(E)[s)HO}) + 2 yi(E)ls L), (23)
k
where

VZ —1/2
x(E)=(1+2( )) , (24)

E+ W Wy

x(E), (25)

— Wy

E)=

y k( ) E+ % W

with V,=nAg.&/ w,. E’s are the diagonalized excitation en-
ergy and are also the solutions of the equation

1 Vi

E-—-W

e | 26
2 © E+3W— o (26)

So, the Hamiltonian can approximately be described as
1
H' ==~ Wlg)gl + 2 E[EXE|. (27)
E

The population inversion or tunneling current can be de-
fined as P(1)=(i(t)|o|(t)), where |i(t)) is the total wave
function in the Schrodinger picture. Since the initialization of
the charge qubit is usually in the left quantum dot, it is rea-
sonable to choose initial state |(0))=e"5|L)|0,). Then, we
can obtain
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P(1) = (y(0)| U™ Ut o Ue ™" U*|(0))
=—u’sin 6

—v%sin 0 Xy (E)y(E)x(E)x"(E)e/EE""
kk' EE'

—v? sin 62 |x(E)|2|x(E’)|26i(E—E’)t
EE'

+ uv cos 02 [|x(E)|2ei(E+W/2)t + |x(E)|ze_i(E+W/2)l],
E
(28)

In Eq. (28), we employed the orthogonal property

2V E)(E") = SE-E') - x(E)x(E"). (29)
k

According to the residue theorem in complex function
theory,

1 ei(E+W/2)tdE
Y(E 2 lEt_e—l(W/Z)I_
S w(6)| A
k E+5 W (O
iE'
=e—i(W/2)z 1 e 'dE’
27ri

-W-2

k E/_wk)

(30)

Denoting the real and imaginary parts of 2;——— as R(w)

— Wy, +10*

and F y(w), respectively, we get

_ (A0 dew' J(@)
(

) (w— ) o +W)?

R(w) = pz

Wy

J(w)

(w+ W)’ (31)

Hw) = 72 Vidlw- o) = m(nA)’
k

where ¢ stands for Cauchy principal value and J(w) is the
spectral density. The contour integral in Eq. (30) can proceed
by calculating the residue of integrand. Then, Eq. (28) reads

P(f) =—sin 6+ sin (1 + sin §)e~27@0"

+cos? 0 cos(wyt)e "0 (32)
where w, is the solution of the equation
w—-W-R(w)=0. (33)

Thus, a rather simple expression for the tunneling current is
obtained analytically. It should be noted here that for =0,
P(r)=1 exactly, and for t— o0, our result goes to the thermo-
dynamical equilibrium state,?® which is modulated by static
bias
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FIG. 1. The population n;(¢) and ng(z) for the biased case &
=0.1A in Ohmic bath. @=0.1,w.=100A. The dotted line is the
RTRG result for comparison.

r
8(1 + —)
w

0) = — S A

P() =—sin 6 — (34)
So, our result gives not only the long time limit behavior but
also the short time damping coherence oscillation, which is
different from Markovian approximation. If semiconductor
quantum dots are to be used as basic building blocks for
quantum information processing, the coherence oscillation is
very important, because the operation completely relies on it.
Until now, our presentation is not restricted to any special
spectral density and can be used for all kinds of baths. Fi-

nally, the electron population in the right dot and left dot can

1o (1)) 1-P(1) 1+(0(1))

be expressed as ng(t)=—7—=—5— and n(t)=—7—
1+P(1)

-2

III. RESULTS AND DISCUSSIONS

For checking our approach, Fig. 1 shows the time evolu-
tion of the electron population in the left and right dot, n;(z)
and ng(t), for the ordinary Ohmic bath with finite bias, to-
gether with the result of the real-time renormalization group
(RTRG) method.?” One can see that there is a good agree-
ment between the two results. Another check is a comparison
of the long time behavior of P(r) with that of the noninter-
acting blip approximation (NIBA).2° Figure 2 shows the long
time limit or the thermodynamic average value of the popu-
lation inversion, P(x)=-¢g'/W, as a function of the bias &.
Comparing with the result of NIBA, which expresses
the long time limit of population inversion as P()
=—c/ \s"s +Af, on the scale of the figures the two curves are
overlapped if the same Ohmic bath is used.

The third check is a calculation of the coherent-incoherent
transition point «,, which is defined as the point a=q, at
which the solution of Eq. (34) is wy,=0. For £=0, we have
a(;:%[l +7A/w,.], the same as what previous authors
predicted.?* For finite &, Fig. 3 sketches the coherent-
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FIG. 2. The long time limit P(>) as a function of static bias & in
Ohmic bath (dotted line) and P(%) in Ohmic bath for NIBA (dashed
line). The coupling constant is fixed as a=0.04.P() in piezoelec-
tric bath (solid line) is also plotted.

incoherent transition point «, as a function of &/w, for ex-
perimental data A=9 ueV and w,.=32.5 ueV in Ohmic bath.
One can see that «, increases with bias significantly, which
means that a moderate bias can make a wider range of the
value of « for keeping the coherent oscillation. Figure 3 can
be compared to the result of Monte Carlo simulations (Fig. 5
of Ref. 23) with a qualitative agreement.

Equations (31)—(34) are our main results to calculate the
population inversion of charge qubit P(¢) as a damped coher-
ent oscillation with frequency w, and damping rate y(w,). At
zero temperature in double-dot system of GaAs material, the
dominant contribution of phonons to QDs comes from the
piezoelectric coupling, and the deformation coupling is small
enough to be ignored. In the following, we will use the pi-
ezoelectric spectral density,?>8

1.0 -

incoherent region

coherent region

04 |

0.0 : : : : : !
0.00 0.05

elo
c

FIG. 3. The coherent-incoherent critical point «, versus static
bias e/ w, with A=9 peV and w,=32.5 peV in Ohmic bath.
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FIG. 4. The time evolution of the population difference for dif-
ferent values of the static bias, e=—8 ueV (dashed line), 0 ueV
(solid line), and 8 ueV (dotted line), in piezoelectric bath. The cou-
pling constant is fixed as a=0.04.

J(w) = aw(l _ 2 sin 2) w.— w), (35)

Wq

where w,=s/l and w;=s/d (s is the sound velocity in crystal,
[ is the dot size, and d is the center-to-center distance be-
tween two dots) and 6(x) is the usual step function. We
choose the size [ as 100 nm (approximate size for the dot in
Ref. 18), i.e., ©,=32.5 ueV (or 0.05 ps~'). Assume the dis-
tance between two dots is sufficiently large, d=667 nm, cor-
respondingly w;=0.15w,.. The typical value of tunneling in
experiment'® is A=9 eV, which will be used throughout
the paper.

The population inversion as a function of time is shown in
Fig. 4 with three different static bias, e=-8 ueV (dashed
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line), 0 eV (solid line), and 8 weV (dotted line), for fixed
a=0.04. The population inversion exhibits damping oscilla-
tion and the long time limit P(<) is determined by the static
bias as shown in Fig. 2. If bias is zero, P()=0.

The quantum coherence may be described by the oscilla-
tion frequency w, and the damping rate ')/:T;l (T, is the
decoherence time). It has already been noticed that long co-
herence time is favorable for quantum manipulation. How-
ever, low oscillation frequency means that the number of
quantum operation that can be achieved within the coherence
time is very limited."” So, we must pay attention to both the
damping rate and oscillation frequency. In what follows, we
discuss the effect of the static bias e, the tunneling A, and
electron-phonon (e-p) coupling constant « on the damping
rate y and the oscillation frequency wg and explain the pos-
sible means to keep the quantum coherence.

The damping rate y versus e relation is shown in Fig.
5(a). The e-p coupling constant @=0.02-0.07 was used to
explain the inelastic current in GaAs/AlGaAs heterostruc-
ture double QD samples'®?® and this is the reason we show
the relation with three different values of e-p coupling, «
=0.04 (solid), a=0.08 (dashed), and a=0.12 (dotted). The
damping rate goes up with increasing bias || and the rela-
tionship between 7y and & agrees qualitatively with the
experiment.'® For e=0 ueV and a=0.04, the decoherence
rate y is approximately 0.02 ns~!. Increasing the e-p cou-
pling to a=0.12, the damping rate goes up to 0.50 ns~',
which is more than half of the experimental result. It proves
that the coupling to piezoelectric phonons is one of the main
decoherence mechanisms in this double-dot system.

The oscillation frequency w, versus € relation is shown in
Fig. 5(b). The parameters are the same as those in Fig. 5(a).
The oscillation frequency can be changed continually by the
static bias and is a nonlinear function of e. Setting large bias
can efficiently enhance oscillation frequency. When a=0.04
and e=0 ueV, the frequency is approximately 2.1 GHz,

a=0.12

FIG. 5. (a) The damping rate y
and (b) the oscillation frequency
w, versus ¢ relations. A=9 ueV,
w;=0.150w,, and a=0.04 (solid
line), 0.08 (dashed line), and 0.12
(dotted line) in piezoelectric bath.
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N I 23
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2.0 |
0.2 \/
. 1 . 1 . 1 . 1.9 .
-10 -5 0 5 10 -10 -5

e (neV)

0 5 10
e (peV)
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FIG. 6. (a) The damping rate 7y
and (b) the oscillation frequency
o versus A relations. a=0.04, w,
=0.15w,, and the static bias e
=0 weV (solid line), 3 ueV
(dashed line), and 6 ueV (dotted
line) in piezoelectric bath.

A (peV)

which agrees well with the fitting result of the experimental
data in Ref. 18. The damping rate and the oscillation fre-
quency are symmetry functions of bias.

Figure 6(a) presents the damping rate as a function of the
tunneling A for fixed @=0.04 and three values of static bias,
e=0 ueV (solid), 3 ueV (dashed), and 6 ueV (dotted).
Damping rate y gradually increases with increasing A. In
experiment, the tunneling A can be principally determined by
the materials and the geometrical restriction of the dots.
However, it is possible to modify the barrier tunneling by
gate voltages, as was shown in Fig. 2(d) of Ref. 18. In Fig.
6(a), if A is of the order of several ueV, the damping rate is
probably in the range of 0.2—1 ns~!, which agrees well with
Ref. 18. A plot of oscillation frequency w, as a function of A
is shown in Fig. 6(b). The behavior of these curves is ap-
proximately linear. The bias effectively makes the oscillation
frequency increase but its effect on the damping rate is rela-
tively weak. Therefore, a larger static bias is a choice to
preserve coherence and may be a suggestion to overcome the
obstacle discussed in Ref. 19.

Our calculation indicates that for the piezoelectric cou-
pling spectral density, the reduction of A makes the damping
rate and the oscillation frequency decrease with almost the
same order of magnitude. This may be used to explain the
result of the experiment in Ref. 18, where a GaAs double
quantum dot charge qubit was made with the quantum level
spacing of 1.5 ueV (oscillation frequency w=2.3 GHz). For
the silicon two-level quantum system in Ref. 19, the charac-
terized energies E"=40.5 neV correspond to angular fre-
quency w=62 MHz, which is 1/37 smaller than that of Ref.
18. However, the coherence time of the silicon QD is 2 or-
ders longer than that reported for GaAs QD. The lack of
piezoelectric coupling in silicon might be the main reason for
the difference behavior between the silicon QD and the
GaAs QD.

Figure 7 presents the damping rate y and oscillation fre-
quency w, as functions of the coupling « for different values

A (peV)

of the bias, e=0 ueV (solid), 3 ueV (dashed), and 6 ueV
(dotted). For fixed bias, the damping rate 7y increases but the
oscillation frequency decreases with increasing «. As a re-
sult, to keep the coherence of charge qubit for a long time,
one should diminish the coupling but ensure the effective
interdot coupling and static bias, either by finding good ma-
terial with small e-p coupling, by modifying the design of the
double QD structure, or by better gate tuning.

IV. CONCLUSION

We have studied the dynamics of charge qubit with the
static bias by a perturbation treatment based on unitary trans-
formations. The approach is fit for various forms of the spec-
tral density and the usual Ohmic and piezoelectric spectra are
used in our calculations. Analytical results of the quantum
dynamics, described by the population inversion P(z), are
obtained together with the damping rate and the oscillation
frequency. We find that a weak coupling of the qubit to the
environment leads to a higher coherence oscillation fre-
quency and a longer coherence time. For a fixed tunneling
between the double quantum dots, the finite bias enhances
the oscillation frequency effectively but its effect on the
damping rate is relatively small. This is a possible way of
maintaining quantum coherence. Besides, our approach is
quite simple, but its output is in good agreement with those
of previous authors using various complicated methods.

The purpose of our unitary transformation is to find a
better way of dividing the transformed Hamiltonian into un-
perturbed part Hj, which can be treated exactly, and HY
+H), which may be treated by perturbation theory. By choos-
ing the form of 7 [Eq. (12)], &, and oy [Eq. (18)], it is
possible to treat H| and H, as perturbation because of the
following reasons: (1) If we treat the coupling term in the
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FIG. 7. (a) The damping rate y
and (b) the oscillation frequency
o versus « relations. A=9 ueV,
w;=0.150w,, and the static bias
e=0 weV (solid line), 3 ueV
(dashed line), and 6 ueV (dotted
line) in piezoelectric bath.

1.2
I £=0 peV 24 L
1.0+ |- - —e=3 peV e
""" =6 peV L .
L R L
. 7
08 | L.
s
2
L ., =
~ . ’/ I
"» 0.6 - "y g
< =)
~ + . 3
>
04| .
0.2
0.0 ' | ' | '
0.0 0.1 0.2 0.3
a

original Hamiltonian H as the perturbation, the dimension-
less expanding parameter is Ekg,%/ wz. For Ohmic bath (s
=1), it is 2a[dw/w, which is logarithmically divergent in
the infrared limit, but for the coupling in transformed Hamil-
tonian H”, the expanding parameter is Ekgifi/ w,%
~2afdww/(w+nA)?, which is finite in the infrared limit.
(2) H| can be treated as perturbation because it satisfied
H'|g)=0. It is shown that the ground state energy correction

of HY is zero. Hy may be omitted because its contribution is
zero at second order of g;.
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