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Abstract
The position-dependent entanglement dynamics of two qubits embedded in a leakage cavity is
investigated. The two qubits are initialled in Bell states and the cavity mode is taken as a
standing wave. It is found that (i) the dynamics of the Bell states can be divided into two
groups according to one-photon entangled states and two-photon entangled states; (ii) the
entanglement life of the one-photon entangled states can be kept as long as possible if we put
the two qubits at certain positions; (iii) at larger detuning, the entanglement dynamics
manifests more robustly.

1. Introduction

Quantum dissipation including decoherence and
disentanglement represents an important quantum
statistical mechanical problem, whose diversity ranges
from quantum–classical transition [1] to limitations of
quantum information [2]. One of the prototype models in
this field is the Caldeira–Leggett model which describes a
quantum particle in a dissipative bath of harmonic oscillators
[3]. It is an idea of an open quantum system based on a
spin–boson model, which means that any system should be
thought of as being surrounded by its environment (reservoir
or bath) which influences its dynamics. The spin–boson model
provides a natural approach for discussing dissipation process
(damping and dephasing), where the centre system consisting
of two-level atoms or pseudo-spins-1/2 is interesting because
it displays both a localized (classical) and a delocalized
(quantum) phase for the effect of the boson field modes
[4, 5]. Models of this kind were intensively investigated,
in which a fundamental one named the Jaynes–Cummings
(JC) model [6] set a very important milestone in the early
days of quantum optics. With the development of theoretical
and experimental techniques, especially in the field of cavity
quantum electrodynamics (CQED) [7–9], the JC model and
its extensions (with more atoms and/or more boson modes
as well as with or without rotation wave approximation) have
been exploited to understand quantum decoherence, i.e., the
vanishing of the off-diagonal elements of the spin-reduced

density matrix in any basis and the dynamics of entanglement
between the centre spins as well as that between the spin and
the environmental boson, i.e., the whole system results in
such a state that cannot be factorized [10] in its Hilbert space.

Recently, a lot of works based on those CQED
systems (JC-like) were devoted to implementing quantum
communications [11–14] or engineering entanglement
between atoms in optical cavities. It is not only a fundamental
issue in the theory of quantum mechanics, but also is
involved with creating, quantifying, controlling, distributing
and manipulating the entangled quantum bits [2, 15–17].
Many interesting phenomena and their explanations or
applications are being discovered. For instance, generally,
the entanglement degree between the centre spins vanishes
asymptotically due to different kinds of quantum reservoirs.
However, if the reservoir consists of, e.g., only one or two
electromagnetic field modes, then the entanglement may
decrease abruptly and non-smoothly to zero in a finite time
[13, 18, 19], which is a new nonlocal decoherence called
entanglement sudden death (ESD). Natali and Ficek discuss
the spontaneous emission effects in entanglement creation in
an optical cavity [20]. However, some effects, such as the
leakage of the cavity, the temperature and the noise arising
from the interaction between the atom and the environment
modes have actually not been considered thoroughly. The
cavity boundary condition in former works can be neglected,
since the size of the atoms is much less than the wavelength of
the optical light. Yet currently, the size of solid quantum
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Figure 1. Time evolution of the concurrence for two qubits initialled in Bell states at different positions with ω0 = 2.0g, ω = g, γ = 0.1
and n = 1.

dots, a good candidate for quantum information process,
can be comparable with the optical wavelength. Then the
boundary condition and the configuration of qubits should be
reconsidered seriously. Therefore, the demonstration of the
dynamics of centre qubits in different realizations of QCED
models is still an open and non-trivial question.

In this paper, we consider two qubits or pseudo-spins
of 1/2 (as an open subsystem with qubits labelled 1 and 2)
in a leaking single-mode cavity. The photon losses due to
imperfect reflectivity of the cavity mirrors should be taken
into account in the realistic description of this CQED [21]
system. And the two qubits initialled as one of the four Bell
states are located at different positions in the cavity with the
standing wave condition. Although we only place them in
a symmetric configuration and their state parameters such as
energy biases and the coupling strengths with the boson mode
are identical, they are still in asymmetry phases which depend
on their positions. In the present work, we focus on the short-
time dynamical effect arising from the positions of the atoms
and cavity leakage. This is related to the scenarios for realizing
quantum computation via Raman interaction of quantum dots
embedded in a micro-cavity, such as the atomic CQED system
[22–24] or the quantum-dot CQED [25]. The initial most-
entangled states will help us to understand the non-unitary and
degrading quantum reduced evolution, which is measured by

the concurrence [26, 27] between the two centre qubits. The
rest of this paper is organized as follows. In section 2 the model
Hamiltonian is introduced. Detailed results and discussions
are in section 3. Finally, we present our conclusions in
section 4.

2. Model and Hamiltonian

Generally, a model in the CQED with leakage can be
represented by a Lindblad master equation:

dρ

dt
= −i[H, ρ] + γ

(
aρa† − 1

2
a†aρ − 1

2
ρa†a

)
, (1)

where ρ is the density matrix of the atom–cavity system. γ

describes the rate of the photons leaking out of the cavity. The
Hamiltonian which determines the unitary dynamics of the
whole system is

H = H0 + HI , (2)

H0 = ω0

2

(
σ 1

z + σ 2
z

)
+ ωa†a, (3)

HI = gσ 1
x (a†e−iqr1 + aeiqr1) + gσ 2

x (a†e−iqr2 + aeiqr2). (4)

The energy bias between the two states is given by ω0 (h̄ = 1).
ω is the photon energy and g is the coupling strength between
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Figure 2. Time evolution of the concurrence for two qubits initialled in Bell states at different positions with ω0 = 2.0g, ω = g, γ = 0.1
and n = 2.

the photon and the qubits. σi(i = x, y, z) is the Pauli matrix.
The positions of the two qubits are r1,2 ∈ (0, L), where L
is the size of the cavity and set as 1.0 for simplicity in the
following. For the boundary condition of a standing wave,
qL = nπ, n = 1, 2, 3, . . .. The two qubits are placed in
a symmetry configuration: r1 + r2 = 1.0, r1 ∈ (0, 0.5], r2 ∈
[0.5, 1.0). Then we define D = r2−r1 as the distance between
them. Obviously D ∈ [0, 1). When D = 0, qubit-1 and
qubit-2 are in the same position (the middle of the cavity),
which means the interaction part of the Hamiltonian 2 is
reduced to a position-independent JC-like model.

3. Numerical simulation results and discussions

At the beginning, the total system is assumed to be separable,
i.e., ρ(0) = |ψ(0)〉〈ψ(0)| ⊗ ρb. The centre subsystem |ψ(0)〉
is prepared as one of the Bell states,

|e1〉 = 1/
√

2(|10〉 + |01〉),
|e2〉 = 1/

√
2(|10〉 − |01〉),

|e3〉 = 1/
√

2(|11〉 + |00〉),
|e4〉 = 1/

√
2(|11〉 − |00〉),

while the bath (the single mode in the cavity) is in its vacuum
state |0〉. After exact numerical calculation, we can determine
ρ(t) from ρ(0) by equation (1). Tracing out the degrees of
freedom of the environment, we finally obtain the reduced
matrix of the two qubits: ρS(t) = T rb(ρ(t)). We discuss the
intra-entanglement dynamics by concurrence, which is defined
by:

C = max{λ1 − λ2 − λ3 − λ3, 0} (5)

and λi, i = 1, 2, 3, 4, are the square roots of the eigenvalues
of the product matrix ρS(σy ⊗ σy)ρ

∗
S(σy ⊗ σy) in decreasing

order. The concurrence is a very good entanglement degree
measurement for a two two-level atom system and applies to
a pure and mixed state.

3.1. Preparation with ω0 = 2.0ω

Then we calculate the time evolution of the concurrence as a
function of D, the distance between the two qubits in the cavity.
In figure 1, we set n = 1 for the standing wave condition,
where the centre-symmetrical atoms are in-phase. In figure 2,
we set n = 2, where the atoms in the two corresponding
positions are out-of-phase. In both figures, we choose
ω0 = 2.0ω for a moderate detuning case and in the following
subsection, we discuss a large detuning one. The fact that the
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Figure 3. Time evolution of the concurrence for two qubits initialled in Bell states at different positions with ω0 = 5.0g, ω = g, γ = 0.1
and n = 1.

leaking rate of photons γ �= 0 determines the destiny of the
concurrence of the Bell states. Yet the calculation results
can help us to understand the differences among the four
important most-entangled states and the position-dependent
dynamics.

In figure 1(a), the sudden death time, during which
the concurrence decreases to the value of zero abruptly, is
increased by changing D from 0 towards 1. This means when
the two qubits are separated from each other step by step, the
entanglement of the initial Bell state |e1〉 = 1/

√
2(|10〉+ |01〉)

can survive longer and longer. However, there is a reverse
tendency of the state |e2〉 = 1/

√
2(|10〉−|01〉) with increasing

D. In another word, in figure 1(b), it is found that when
D = 0, the concurrence practically remains at its maximum
value 1.0. As known, |e2〉 is a decoherence-free state
when γ = 0. Similarly, the position-dependent effects on
|e3〉 = 1/

√
2(|11〉 + |00〉) and |e4〉 = 1/

√
2(|11〉 − |00〉) are

also completely opposite. However, in figures 1(c) and (d), the
variation of distance between the two qubits is not helpful to
prolong the entanglement sudden death time obviously. Yet it
is worth noting that in the condition of shorter distance for the
state |e3〉, or in the condition of longer distance for the state
|e4〉, the concurrence has an obvious revival process during the
interval gt ∈ (1.5, 2.0).

If n = 2, the middle point of the cavity is a wave node
instead of an antinode in the case of n = 1. Therefore, the
phase in r1 and r2 is opposite and the entanglement dynamics

behaves totally differently from that in the case of n = 1.
For the state |e1〉 in figure 2(a), when D approaches 0.5, the
concurrence seems to enjoy a fairly long life. It is easy to
find that D = 0.5 means the two qubits just stand at the two
antinodes inside the cavity. While in figure 2(b), the tendency
of |e2〉 is contrary to that of |e1〉. The concurrence quickly
damps unless D moves towards 0 or 1. The two extreme
values suggest that the qubits are at wave nodes. During
the short time interval we are interested in, both of the two
states have no revival phenomena after their entanglement
becomes ‘dead’. In the positions where |e2〉 obtains a long
life, |e3〉 has two revivals during the short-time evolution (see
figure 2(c)). And if the qubits are near to two
different antinodes respectively, |e4〉 damps with an obvious
entanglement revival.

3.2. Preparation with ω0 = 5.0ω

In the condition of a larger detuning (here we set ω0 = 5.0ω),
the concurrence dynamics is qualitatively consistent with the
above results. Comparing figure 3 with figure 1, it is roughly
that the farther the distance between the two qubits, the longer
the entanglement life for the centre system. The entanglement
is more robust for large detunings rather than small or even
zero detuning. It is partly due to the fact that in condition of a
larger detuning, the effective coupling (g = 1/5ω0) between
the qubit and the cavity is weaker than that of the smaller one
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Figure 4. Time evolution of the concurrence for two qubits initialled in Bell states at different positions with ω0 = 5.0g, ω = g, γ = 0.1
and n = 2.

(g = 1/2ω0). Thus, in the off-resonance case (large detuning),
the loss of entanglement from the bell state is slower than that
of near-resonance (small detuning).

In figure 3(a), after the moment gt = 2.0, the
entanglement degree is still above 0.2 whatever the distance
D is. Around D = 0.4, the dynamics shows a more complex
process. There occurs an entanglement sudden death (about
gt = 2.0) and a concurrence revival (about gt = 3.0).
The whole pattern of figure 3(b) is also reverse to that of
figure 3(a) as well as the relationship between figures 1(b) and
(a). In figures 3(c) and (d), the concurrence damps with a long-
term vibration; and ESD tends to occur when D approaches 0
(both qubits are at the antinode) and 1 (they are at the node).
And the high detuning can help to maintain the entangled
qubits if their distance is around D = 0.5.

Although the spontaneous emission of the qubits is
ignored in the condition of moderate detuning (to see
subsection 3.1), the pattern of figure 2 is qualitatively the same
as that in a large detuning condition (to see figure 4). Yet the
latter shows more complex details, which corresponds to the
dynamics of the n = 1 case in figure 3. It is not difficult to find
that one half (from D = 0 to D = 0.5) of the four sub-figures
in figure 4 (n = 2) is consistent with the corresponding ones
in figure 3 (n = 1).

In summary, Bell states can be divided into two groups,
|e1,2〉 (one-photon entangled states or anti-parallel states) and
|e3,4〉 (two-photon entangled states or parallel states). The

former group has opportunities to keep its entanglement degree
as long as possible if we place them at certain positions: in
case of n = 1, the two qubits initialled in |e1〉 (|e2〉) should be
at the wave nodes (antinode); and in case of n = 2, |e1〉 (|e2〉)
should be at the antinodes (wavenodes). The results of n > 2
are analogous to the above two cases. And it is well known, if
the entanglement degree between qubits can be robust against
the dissipation effect from their environment, such as the
leakage from the cavity, it is very useful to the applications
of the quantum dot CQED system, which is the basis of the
realization of gate operations of quantum computation. For
the latter one, their dynamics are also dependent on the qubits’
positions. It is justified to omit the spontaneous emission only
in the case of a large detuning. However, our calculation shows
that most basic features can be discovered in any nonzero
detuning case, such as the one we choose.

4. Conclusion

In this paper, two qubits initialled as Bell states are placed
in symmetrical positions in the centre of a leaking cavity.
The cavity is in the condition of a standing wave. In two
different standing wave cases, we calculate the time evolution
of the four Bell states under moderate and large detuning
conditions. All of the results show that the entanglement
dynamics is a sensitive function of the position of the qubits
inside the cavity and the initial states. This implies that
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only by changing the positions of the qubits in the cavity (or
inversely the size of the cavity in practice), we can control their
dynamics. And when the qubits are near to the antinodes or
nodes, their dynamics can be utilized in the process of quantum
information.

Many works still remain to continue the present one,
such as: (i) what if the qubits are not placed at positions
symmetrical to the centre of the cavity? (ii) When we
move them simultaneously from the centre position towards
different edges of the cavity, could this approach contribute
to the entanglement revival? These issues are under our
consideration.

Acknowledgments

We would like to acknowledge the support from the National
Natural Science Foundation of China under grant nos.
10575068, 10474062 and 10547126, Shanghai Education
Foundation for Young teachers and the Shanghai Research
Foundation no. 07dz22020.

References

[1] Vojta M 2006 Phil. Mag. 86 1807
[2] Nielsen M A and Chuang I L 2000 Quantum Computation and

Quantum Information (Cambridge: Cambridge University
Press)

[3] Caldeira A O and Leggett A J 1981 Phys. Rev. Lett. 46 211
[4] Le Hur K and Li M-R 2005 Phys. Rev. B 72 073305

[5] Li M-R, Le Hur K and Hofstetter W 2005 Phys. Rev. Lett.
95 086406

[6] Jaynes E T and Cummings F W 1963 Proc. IEEE
51 89

[7] Zheng S B and Guo G C 1997 J. Mod. Opt. 44 963
[8] Rauschenbeutel A et al 2000 Science 288 2024
[9] Breuer H P and Petruccione F 2002 The Theory of Open

Quantum Systems (Oxford: Oxford University Press)
[10] Shimony A 1995 Ann. New York Acad. Sci. 755
[11] Yu T and Eberly J H 2003 Phys. Rev. B 68 165322
[12] Diosi L 2003 Irreversible Quantum Dynamics ed F Benatti and

R Floreanini (New York: Springer) pp 157–63
[13] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[14] Carvalho A R R, Mintert F and Buchleltner A 2004 Phys. Rev.

Lett. 93 230501
[15] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[16] Kane B E 1998 Nature (London) 393 133
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