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Abstract

Automatic defect detection in electroluminescence (EL) images of photovoltaic

(PV) modules in production line remains as a challenge to replace time-consuming

and expensive human inspection and improve capacity. This paper presents a deep

learning-based automatic detection of multitype defects to fulfill inspection require-

ments of production line. At first, a database composed of 5983 labeled EL images of

defective PV modules is built, and 19 types of identified defects are introduced. Next,

a convolutional neural network is trained on top-14 defects, and the best model is

selected and tested, achieving 70.2% mAP50 (mean average precision with at least

50% localization accuracy). Then, through analyzing an object detection-based

confusion matrix, recognition bias and detection compensation in missed defects that

restrain the best model's mAP50 are discovered to be harmless to normal/defective

module classification in real production line. Finally, after setting specific screen

criteria for different types of defects, normal/defective module classification is

conducted on additionally collected 4791 EL images of PV modules on 3 days, and

the best model achieves balanced scores of 95.1%, 96.0%, and 97.3%, respectively.

As a result, this method surely has a highly promising potential to be adopted in real

production line.
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1 | INTRODUCTION

Renewable energies have become an irreversible trend for future

power supply. Besides wind and water energy, another one of the

most important and promising technologies is solar energy, which sup-

plies around 2% of the world's total energy demand today and is a

proven technology to be deployed to a multi-terawatt scale by 2030.1

A photovoltaic (PV) cell is the basic unit of converting solar energy to

electricity, and a number of them are concatenated to form a PV

module through some processing stages in production line. During the

solar cell production and processing stages, various defects like weak

soldering, finger interruption, and crack can be generated due to

incorrect manipulations such as deficient soldering, screen printing

error, and collision. Among all the types of these defects, part of them

hinder the current flow, decrease the module power, and even

damage the whole module while others may not infect the module

efficiency but the quality grade. In this context, all of them should be

inspected carefully in the production process to ensure the efficiency,

security, and quality of the PV modules.

One of the most commonly used approaches to detect defects in

PV modules is electroluminescence (EL) imaging due to its high resolu-

tion to characterize different types of defects.2,3 But manually

inspecting EL images requires well-trained professionals to keep

staring at the screen all the time as the line moves. It is not only

time-consuming but also expensive and the inspection accuracy may

fluctuate due to the boring and mechanical repetition of the
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inspection process. Hence, many researches aiming to achieve auto-

matic detection of defects in EL images have been done in the past

decade. These studies can be divided into two groups according to

their approaches: using conventional signal processing algorithms4–8

and using artificial intelligence (AI) techniques.9–16

Tsai et al.4 proposed a technique based on independent compo-

nent analysis to detect the presence/absence of crack, break, and

finger interruption in PV modules but cannot distinguish them.

Anisotropic diffusion filtering,5 matched filtering,6 and vesselness

filtering7 had been adopted to focus on detection of cracks in EL

images. Tseng et al.8 established a method based on binary clustering

of features to detect the finger interruption in EL images. Actually,

since different types of defects vary considerably in their appear-

ances, using single image processing approach can hardly deal with all

of them and this is why many researchers turned into AI techniques

that developed rapidly and proved superiority by successful

applications17–21 in various research areas in recent years. Deitsch

et al.9 utilized support vector machine and convolutional neural net-

works (CNN) to predict the possibility that a solar cell has power loss.

This work is one of the pioneering attempts to introduce machine

learning and deep learning methods into EL inspection, but it did not

concern specific defect types. Mayr et al.10 used weakly supervised

learning based on ResNet50 to segment cracks in EL images and

proved effective especially when the data size is limited. Akram

et al.11 introduced five types of defects and did normal/defective clas-

sification of cells, but they could not detect and localize specific

defects. Tang et al.12 combined generative adversarial networks with

data augmentation to generate more training data and achieved good

classification accuracies for images of defect-free (84%), micro-crack

(82%), finger-interruption (81%), and break (83%). But there is a speci-

ficity that each of their images only carried one type of defects while

the practical situation is that different types of defects may exist in

the same cell and module in production line.

The purpose of automatic detection is to replace the manual

inspection in production line, and it has two requirements: (1) different

types of defects should be concerned, and (2) every single defect

should be localized and classified, which is essentially an object

detection task. But current researches only studied crack, break, and

finger interruption4–16 and cannot handle localization problem well

for multitype defects, which is what we aimed to achieve in this paper.

We sum up our main contributions as follows: (1) we gathered 5983

EL images of defective modules and labeled all of them, with 19 -

categories of defects found and introduced. To our knowledge, this is

the first time that so many EL images of defective modules were

collected and labeled as well as so many types of defects were intro-

duced in EL inspection. (2) We adopted an existing mask region based

CNN (Mask R-CNN) with ResNet-101-FPN backbone model22 in

Detectron223 platform to do object detection task on the top-14

types of defects and used the COCO metrics24 including average pre-

cision (AP, averaged over different intersection over union (IoU)

thresholds), AP50 (AP at IoU threshold = 50%), and AP75 (AP at IoU

threshold = 75%) to assess the detection results for each type. As far

as we know, this is the first time that AP was used in object detection

task of EL inspection. (3) Furthermore, to apply the method in real

production line, we further calculated and analyzed an object

detection-based confusion matrix, and we also investigated detection

requirements for each type of defects of production line, set

corresponding screening criteria, and conducted normal/defective

classification on additional 4791 EL images of PV modules. For all we

know, this is the first time that defect screening criteria and automatic

detection in production line are involved in literature.

2 | OUR DATASET AND DEFECT TYPES

We discontinuously gathered 5983 EL images of defective nine-

busbar (9BB) 6 × 24-half-cell Czochralski (Cz) grown monocrystalline

Si modules in a Chinese PV module production plant from January to

April, 2020. The company's name is not disclosed here because of

nondisclosure agreement. These images were taken by an OPT-M960

EL machine produced by Suzhou Optech New Energy Technology

Co., Ltd, with 45 V, 8A, exposure time of 1000 ms and gain factor of

1 set. These EL images were labeled by four well-trained people and

an experienced leader using Labelme software, and then the gener-

ated annotation files were converted to COCO data format by code

to fulfill training demand. Figure 1 illustrates these types of defects

we identified, together with the labeled numbers listed in the paren-

theses. Different types of defects were named according to their vari-

ous appearances or causes, but the causes for a certain type of

defects could be very complicated so we only state major ones here.

These 19 types of defect samples were cropped from different EL

images of modules, and we named them as follows: (1) a weak solder-

ing is typically a dark rectangle, extending symmetrically from a bus-

bar. It is usually caused by deficient soldering of the belt on the

busbar so it blocks collection of current flow and lowers module effi-

ciency. (2) A black area is an irregular dark region that usually implies

silicon material problems like temperature inhomogeneity during firing

process, being polluted or lack of minor carriers. In this paper, they

were all named as black area because of similarity in their appear-

ances. (3) A scratch is a snatchy dark line with uneven thickness on

the surface of a cell. It does no harm to the cell efficiency but influ-

ence module appearance and quality grade, so it should also be

detected. (4) A finger interruption is a single vertical dark line typically

between two neighbor busbars and it is usually caused by screen

printing errors. Due to the resolution limitation of our EL camera, the

fingers cannot be displayed. (5) A crack is a sharp dark line with even

thickness compared to a scratch but sometimes they can look quite

like each other and even a professional can hardly distinguish them. A

crack is usually caused by thermo-mechanical stresses like collision.

(6) A low cell has lower efficiency than other normal cells and appears

darker. Cells with sever efficiency difference should not be matched

in the same module for power and security considerations. (7) A finger

block is a bunch of neighbor finger interruptions. It was differentiated

from finger interruption because of its bigger effect on module effi-

ciency so that production line has different inspection requirements

for them. (8) The EL images of modules were segmented into
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subimages to highlight the defects in them and enlarge the data size.

A cell mix is a subimage that includes high/low cells and normal cells.

(9) A disconnection appears as an absolute dark cell and it is mainly

due to cell connection faults. (10) A break is a dark area where part of

a cell breaks and falls and it is usually accompanied by cracks. The

main cause of break is also thermo-mechanical stresses like collision.

(11) A high cell has higher efficiency than other normal cells and

appears brighter. It is not a fault but shall be detected and picked out

from other cells in the same module, and used in another module with

higher efficiency to avoid power waste, required by the producers.

(12) A belt drop is a visible separation of the belt from the busbar and

blocks current flow. (13) A bright mark is an obvious bright area where

current is over intense. The probable reasons can be some abnormali-

ties on the edge that cause increase of leakage current, such as leaked

silver paste, problems of soldering, corrosion and firing, and so on. It

needs the inspector to check the visual image or even the real module

to figure out the exact reason. A bright mark can generate hot spot

and even burn the whole module if not repaired in time. (14) A bright-

ness saltation shows that a cell has inhomogeneous series resistance

due to cell faults. (15) A foreign object is an anomalous object placed

on the cell that can also generate hot spot as time goes by. (16) A

black line is a horizontal or vertical long straight dark line that is

neither a normal scratch nor a crack. (17) A black corner indicates a

corner that is dark but not broken, caused by over corrosion when

producing the cells. (18) A black edge is a dark cell edge that is caused

by over corrosion. (19) A sucker mark is generated in transportation

by machines. These defects were collected from one factory, and

other companies may have a few different types due to distinction of

manufacturing technology. In addition, part of our defects can also be

found in some literatures,2,25–27 although they may have different

names. To our knowledge, except for crack, finger interruption and

break that other researchers used to study, the rest of our defects

were barely investigated in automatic detection in literature.

According to the influence degree of these 19 types of defects,

we can further divide them into four groups: (1) defects that seriously

affect module efficiency and durability: weak soldering, crack, discon-

nection, break, belt drop, bright mark, brightness saltation, and foreign

object; (2) defects that partly decrease module efficiency: black area,

finger block, black line, black corner, and black edge; (3) defects that

barely influence module efficiency but appearance: scratch, finger

interruption, and sucker mark; (4) cell efficiency mismatch: high cell,

low cell, and cell mix. Note that high cell and low cell are essentially

not faults, but they still should be detected and picked out from other

normal cells in the same module to avoid waste (high cell) as well as

F IGURE 1 Nineteen types of
defects (appearance numbers) we
labeled in 5983 defective
modules: (1) weak soldering,
(2) black area, (3) scratch,
(4) finger interruption, (5) crack,
(6) low cell, (7) finger block, (8) cell
mix, (9) disconnection, (10) break,
(11) high cell, (12) belt drop,

(13) bright mark, (14) brightness
saltation, (15) foreign object,
(16) black line, (17) black corner,
(18) black edge, and
(19) sucker mark
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module efficiency decrease and firing risk (low cell). Besides them, cell

mix is an auxiliary labeling trick to show that high/low cells are mis-

matched with normal cells in a subimage. Based on the difference of

influence degree, the four groups of defects are required to be

detected and repaired with different tolerance in practical production

environment. The first and fourth groups must be all detected and

repaired while thresholds of geometric size will be set for the second

and third groups to block serious ones and release others, in which

way module quality and capacity can be balanced.

It is revealed form Figure 1 that there is a severe number imbal-

ance among these defects and bigger number means higher possibility

for a defect to show up in production lines. Considering the amount

limitation of the last five types of defects, in this paper, we concen-

trate on the top 14 types of them.

3 | METHODOLOGY

Figure 2 describes the workflow of our method. The whole process is

composed of three stages: (a) data preprocessing, (b) model

experiment, and (c) application analysis. Data preprocessing includes

building three datasets, oversampling, segmenting defective

subimages, and augmenting data. Model experiment contains setting

experimental parameters, training, selecting, and testing model.

Application analysis involves feasibility analysis, defect screen criteria

setting, normal/defective classification, and results report.

3.1 | Data preprocessing

3.1.1 | Building three datasets

In general, the full database should be divided into training, validation

and test sets to do machine learning or deep learning. In this paper,

training set is used to train the model. Validation set is used to

compare the models under different data preprocessing strategies and

select the best model. Test set is used to evaluate the selected best

model. The evaluation result on test set should be at least well

matched with the result on validation set to ensure the reliability of

the selected model to be adopted in practice. We randomly divided

the 5983 defective module EL images into training, validation and test

sets at the ratio of 6:2:2. Since the defect numbers on different

modules are not the same, after random module division, the defect

amounts of validation set and test set are also slightly different, as

shown in columns 3–5 of Table 1.

3.1.2 | Oversampling

There is a severe number imbalance among different types of defects

as shown in Figure 1. Inspired by the research28 in which

oversampling was used to increase defective data size and achieved

good result, we also utilized oversampling to increase the proportions

of some minor defects. In our exploratory experiments, we found that

among the defects fewer than 1000, the model performed bad on

break, belt drop and bright mark but well on disconnection, high cell,

and brightness saltation. This suggested that for those obvious and

visually distinctive defects like disconnection, high cell, and brightness

saltation, a finite number of them were enough to achieve good

results so they were not oversampled. For other three types of

F IGURE 2 Workflow of our method is composed of three stages:
(A) data preprocessing including building training, validation and test
sets, oversampling, segmenting subimages and augmenting data,

(B) model experiment including setting experimental parameters,
training model under different data preprocessing strategies as well as
selecting and evaluating the best model using mAPall, and
(C) application analysis including feasibility analysis using confusion
matrix, defect screening criteria setting according to length and area
of defects, normal/defective classification and results report by
confusion matrix, precision, recall, F1 score, missed detection rate,
and false detection rate
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defects, we oversampled (copied) three times for the modules carrying

break, 10 times for the modules carrying belt drop and bright mark to

improve their proportions. As a side effect of copying on modules,

other types of defects in these modules were also duplicated to differ-

ent extent. Moreover, for the defects more than 1000, the model did

not perform well on scratch and finger interruption but since there

were already large numbers of them, copying more would make little

sense so they were not specifically oversampled like break, belt drop,

and bright mark.

3.1.3 | Segmenting subimages

We segmented the module images into defective subimages based on

two considerations: (1) a module is dominated by its background

which is unrelated information for the detection of defect, so it was

segmented into defective subimages to highlight the defects. (2) The

size of a module EL image is 6500 × 3200 pixels and should be scaled

to 800 × 800 pixels to fulfill the input size limitation of the CNN

model we used.

3.1.4 | Augmenting data

This operation is to generate additional training data from a limited

training set. Common approaches to do augmentation include flip,

cropping, translation, rotation, brightness, and contrast changes. In

this paper, we only adopted horizontal, vertical, and diagonal flip and

other approaches have not been used yet. Extra experiments still

remain to be done to determine a better augmentation strategy.

Figure 2a presents the workflow of data preprocessing: at first,

the 5983 labeled EL images of defective PV modules were randomly

divided into training set, validation set, and test set at the ratio of

6:2:2. Then, oversampling was done on training set to copy more

modules that carry break, belt drop, and bright mark. Next, all module

images of training set, validation set, and test set were segmented into

subimages. At the end, subimages of training set were flipped along

vertical, horizontal, and diagonal lines to produce more training data.

Furthermore, to investigate the particular effects of oversampling

(copy) and data augmentation (flip), we set contrast experiments

under four data preprocessing strategies: (1) None: neither copy nor

flip was applied; (2) Copy: only copy was applied; (3) Flip: only flip was

applied; and (4) Both: both copy and flip were applied. The number

distribution under these four strategies are shown in columns 6–9 of

Table 1.

3.2 | Model experiment

3.2.1 | Setting experimental parameters

The deep learning model we adopted in this work is Mask R-CNN

with ResNet-101-FPN backbone22 in Detecton223 platform. Before

training, some settings should be done at first. In this work, we set

300 k as maximum iteration, 0.01 as basic learning rate, and 8 as batch

size for 4 RTX 2080Ti GPU (2 per GPU). Additionally, the basic

TABLE 1 Information of all types of defects including number distribution among training (Train), validation (Val), and test sets, among the
four data preprocessing strategies (None, Copy, Flip, and Both) of training set and evaluation results of the best model on validation set (APall) and
on test set (APall, AP50, and AP75)

Id Defect type Train set Val set Test set

Data strategies (train set) Val set Test set (%)

None Copy Flip Both APall APall AP50 AP75

1 Weak soldering 2378 722 837 2378 3853 9512 15412 48.4 44.1 80.1 43.7

2 Black area 2157 674 745 2157 2602 8628 10408 25.8 26.4 70.8 11.7

3 Scratch 2138 709 699 2138 2978 8552 11912 18.3 19.6 52.2 10.7

4 Finger interruption 2000 705 681 2000 2680 8000 10720 11.3 10.8 41.7 2.0

5 Crack 1884 653 669 1884 3779 7536 15116 46.7 44.8 85.9 42.3

6 Low cell 1291 416 327 1291 1966 5164 7864 66.7 58.9 64.0 59.8

7 Finger block 997 203 313 997 1377 3988 5508 43.2 42.9 85.2 35.3

8 Cell mix 928 288 266 928 1243 3712 4972 86.1 84.6 84.7 84.7

9 Disconnection 443 139 162 443 663 1772 2652 97.5 98.5 99.9 99.9

10 Break 253 66 112 253 1543 1012 6172 35.9 30.6 66.4 22.7

11 High cell 201 99 90 201 336 804 1344 84.8 78.3 83.5 80.3

12 Belt drop 93 40 21 93 1023 372 4092 22.0 31.4 52.4 30.8

13 Bright mark 35 20 8 35 385 140 1540 17.8 37.8 64.9 22.6

14 Brightness saltation 21 7 5 21 181 84 724 85.8 37.9 50.5 39.2

mAP 49.3 46.2 70.2 41.8

Note: Each mAP value is the mean of corresponding AP values of all the 14 types of defects.
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learning rate was set to decrease by 10 twice at the 150kth and

200kth iterations. Other values of these parameters were also tried in

our exploratory experiments and they are not shown for the triviality

of their results. Besides, we set 12.5 k as the iteration period to

cyclically evaluate the model on validation set and save intermediate

models during training process. All other parameters were maintained

as defaults in Detectron2.

3.2.2 | Training, selecting, and testing model

With datasets prepared and settings done, we just need to run a

python file in Detectron2 to start training the model on training set

and it goes automatically until 300 k iterations. During the training

process, validation set was cyclically used to evaluate the model per-

formance, and results of standard COCO AP metrics24 were stored in

tfevents file, which could be loaded and visualized by tensorboard.

Among the various AP metrics, mean average precision over all IoU

thresholds (mAPall, the same as AP in official web page and we call it

mAPall in this paper to avoid confusion) is the single most important

and common used metric in object detection task so among the

models that were stored during training process and under the four

data preprocessing strategies, the one that had the highest mAPall on

validation set was selected as the best model. Then, the selected best

model was evaluated on test set with the same COCO AP metrics as

an ultimate measurement. By the way, only AP values on bounding

boxes will be reported since masks are for instance segmentation and

not necessary for object detection task in this work.22

Figure 2b illustrates the process of our model experiment: at first,

we set experimental parameters, then started to train the model on

training set. During training process, validation set was cyclically used

to evaluate the model performance, and each evaluation result of

standard COCO AP metrics was saved. After training under the four

data preprocessing strategies finished, the model that had the highest

mAPall on validation set was selected as the best model, and then it

was ultimately evaluated on test set with the gained COCO AP met-

rics as the final results.

3.3 | Application analysis

3.3.1 | Feasibility analysis

AP metrics are excellent evaluation indicators for characterizing

model performance on each type of defects in object detection

task, but they are independent single values and cannot display the

details of the model predictions among different types. Thus, we

calculated a confusion matrix based on our defect detection

problem as a supplement to display the wrong predictions and

missed defects of the selected best model on test set. Analyzing

these inaccurate predictions helps us more clearly understand the

model performance and see if it is feasible to be used in

production line.

3.3.2 | Defect screening criteria setting

Actually, EL inspection for a PV module in production line is a normal/

defective classification task, and a module to be defective or normal is

based on whether the detected defects surpass their screening criteria

or not. Typical criteria include specific thresholds of length and area

for certain types of defects. Moreover, multiple thresholds of length

and area can be set to divide the module into different quality classes.

The criteria are not unchangeable and up to requirements from pro-

ducers. In this paper, we set basic screening criteria, which involves

the length and area limitation but ignored the quality class division to

simplify the inspection process.

3.3.3 | Normal/defective classification and results
report

To demonstrate the effectiveness of our method, we collected addi-

tional 4791 EL images of PV modules taken on 3 days in a real pro-

duction line and did normal/defective classification using the

selected best model. These images included normal and defective

ones, but the numbers were not clear at the beginning. They were

inspected by the best model and divided into normal and defective

classes and then we manually checked the classified EL images one

by one. For this normal/defective classification task, we report the

classical confusion matrix which is composed of true positive (TP),

false positive (FP), true negative (TN), and false negative (FN). In EL

inspection, since we care more about defective modules, TP repre-

sents how many ground truth defective modules were correctly

predicted as defective ones, FP represents how many ground truth

normal modules were wrongly predicted as defective ones, TN rep-

resents how many ground truth normal modules were correctly

predicted as normal ones, and FN represents the ground truth

defective modules that were wrongly predicted as normal ones.

With them determined, precision and recall can be calculated from

Equations 1 and 2 while precision describes among the modules the

best model predicted as defective, how many of them are truly

defective and recall describes among the modules that are truly

defective, how many of them are predicted as defective by the best

model. At the end, F1 score (Equation 3) is the ultimate indicator,

which is harmonic average of precision and recall. Practically, the

production line tends to use another two wilder measurements: mis-

sed detection rate (MDR) (Equation 4) and false detection rate

(FDR) (Equation 5) that, respectively, show the proportions of FN

and FP among the whole capacity of 1 day as the capacity is easier

to count (although it may not be very scientific since if all the mod-

ules are perfect, the two rates will be very low but it should owe to

the good manufacturing instead of the good performance of our

model). After a thorough consideration of production efficiency and

quality, the producers and managers determined to set 0.2% and

2% as thresholds for MDR and FDR, respectively, to assess whether

the performance of the best model reaches the standard and can be

really adopted in production line.
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precision=
TP

TP+FP
ð1Þ

recall =
TP

TP+FN
ð2Þ

F1score =
2× precision× recall
precision + recall

ð3Þ

MDR=
FN

TP+FP+TN+FN
ð4Þ

FDR=
FP

TP+FP+TN+FN
ð5Þ

Figure 2c shows the process of this section: at first, we did feasibility

analysis of applying the best model in production line using a confu-

sion matrix that is calculated based on our object detection task. Next,

we set specific screening criteria for different types of defects

according to their length and area. Then we use the best model to

conduct normal/defective classification with the screening criteria,

and finally, the inspection results are reported by confusion matrix,

precision, recall, F1 score, MDR, and FDR.

4 | EXPERIMENTAL RESULTS AND
DISCUSSION

4.1 | Experiments to select the best model

Figure 3a presents the mean training processes over all 14 types of

defects under the four data preprocessing strategies with mAPall of

validation set and total loss22 against iteration and learning rate (Lr).

As we can see, each mAPall curve of validation set starts at a high

point, which is due to the use of a pretrained model that avoided

training from scratch and saved a lot of time. As iteration goes, mAPall

rises on the whole and the first decrease of learning rate at the

150kth iteration gives a sudden jump and drop for each mAPall curve

and its corresponding total loss curve. But the second decrease of

learning rate at the 200kth iteration has no obvious effect which

means the model performance has already touched its extreme and

cannot be further improved by this way. Furthermore, there is a slight

trend for the four mAPall curves to fall off after passing their peak

values, and it suggests that this part of each training process is over-

fitting the training set which has no more effect to improve the model

performance on validation set. Another notable observation is that,

compared with total loss curves that drop off relatively more

smoothly, mAPall curves have higher fluctuation degrees that reflect

the real evolution processes of model performance while the

functionality of total loss curves is just to ensure the convergence of

training processes.

As mentioned in Section 3.2, the model that has the highest

mAPall value on validation set under the four data preprocessing strat-

egies should be selected as the best model and we have red-circled

the best one in Figure 3a. To our surprise, the best model does not

take place on curve 4 but on curve 3 which implies a negative effect

of copy on mean performance of the model on all types of defects.

Actually this conclusion can also be drawn by comparing curves 1 and

2 in Figure 3a. Although the highest mAPall value of curve 2 is bigger

than that of curve 1, curve 2 is lower than curve 1 for all the

remaining iterations after passing its peak which also suggests a prob-

able negative influence of copy. To investigate this deeper, we give

training process illustrations of the three specifically copied minor

defects: break, belt drop, and bright mark (Figure 3b–d) and another

incidentally copied defect: high cell (Figure 3e) for comparison. As can

be calculated from columns 6 and 7 of Table 1, copy increased pro-

portions of break, belt drop, and bright mark from 1.7%, 0.6%, and

0.2% to 6.3%, 6.9%, and 1.6% while the proportion of high cell stays

around 1.4%. Comparing curves 1 and 2 in each of Figure 3b–d, we

can find that copy surely improves the model performance for all of

the three minor defects but the improvement degree declines from

break to bright mark which also indicates that the contributions of

duplicated data are not stable and up to the nature of different types

of defects. To be clear, for break, more features can still be extracted

by loading its duplicated data, but for belt drop and bright mark, the

remaining features are much fewer and/or more difficult to be

extracted than for break. Moreover, increasing the proportions of the

three minor defects through copying has negative influence for some

other defects. Figure 3e presents high cell as a representation whose

curve 2 is almost the lowest all the way. Besides, focusing on curve

3 in each of the Figure 3b–e, we can find that flip also has various

effects on different defects, but averaging on all 14 types, the ulti-

mate result is that copy brings down the mean performance of the

model while flip enhances it and this is why the best model is on curve

3 but not on curve 4 in Figure 3a.

4.2 | Evaluation result of the best model

After the best model was selected, we evaluated its performance on

test set, and APall values on both validation set and test set for each

type of defects are listed in columns 10 and 11 of Table 1. As we can

see, the results on these two datasets generally match with each other

with only one exception: brightness saltation. It has 85.8% APall on

validation set but 37.9% APall on test set and a possible cause is the

bias between the limited data, 7 and 5 defects in the two datasets.

The mAPall of test set is 46.2%, just slightly lower than 49.3% of vali-

dation set that demonstrates that the experiments and results are

generally reliable and the best model can be adopted to predict other

new data directly. Besides APall and mAPall, we also list AP50, AP75 for

each type of defects to describe their results under 50% and 75% IoU

thresholds in the last two columns (12 and 13) of Table 1 and the best

model achieved 70.2% mAP50 and 41.8% mAP75. Actually, pursuing

high mAP value under strict localization accuracy demand like 75%

IoU threshold is still a harsh challenge in computer vision and mAP50

is much easier to achieve a higher value than mAP75. Besides, in our

EL inspection task, it is still quite clear and recognizable if a defect is

predicted by the model with a bounding box whose localization

ZHAO ET AL. 7



accuracy is 50% so we mainly use 70.2% mAP50 value to describe the

mean performance of the best model.

We can analyze per-defect performance directly by their AP50

values of test set as shown in column 12 of Table 1, and some

conclusions can be drawn. At first, the difficulty of a certain defect

type for the CNN model to learn varies with types and this can be

found by comparing their sample numbers of training set and AP50

values of test set. As we can see, belt drop, scratch, brightness

F IGURE 3 (A) Mean training processes of the model over all types of defects under the four data preprocessing strategies with mAPall of
validation set and total loss against iteration and learning rate (Lr). The best model with the highest mAPall is marked by a red circle. Training
processes of (B) break, (C) belt drop, (D) bright mark, and (E) high cell under the four data preprocessing strategies with APall of validation set
against iteration and Lr
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saltation and finger interruption are the four defects whose AP50

values are lower than 60%, but their original samples are at different

orders of magnitude. Belt drop and brightness saltation only have

fewer than 100 samples in training set while scratch and finger inter-

ruption have more than 2000, so we think belt drop and brightness

saltation are mainly restrained by the limited samples but scratch and

finger interruption are really difficult for the CNN to learn. For

scratches, the probable reason maybe the CNN model was confused

by the high variation in their length, severity and even radian, but for

finger interruptions, we can only infer that their features are not

strong enough for the CNN to train well. In this case, human perform

obviously better because we are more robust to the variations and

slight features. To precisely analyze the reasons, more specific

researches should be done in future work. Second, from the

perspective of defect groups introduced in Section 2, scratch and

finger interruption both belong to the third group of defects that

barely influence module efficiency but appearance and the best model

generally performed well on other groups, except for some defects

F IGURE 4 Defect prediction
examples by the best model on
test set. (A) Correct predictions
for all 14 types of defects.
(B) Wrong predictions with
ground truth defect types given in
parentheses. (C) Missed defects
marked by dashed boxes with
ground truth defect types given in
parentheses
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with limited samples like belt drop and bright mark. To sum up, 70.2%

mAP50 value is generally a good result but still has room to be

improved.

Figure 4 illustrates the defect prediction results by the best model

on test set with (a) correct predictions, (b) wrong predictions, and

(c) missed defects. Each prediction in Figure 4a,b is composed of three

elements: a bounding box for defect localization, a class label for

defect classification, and a score to show the model's confidence in

the classification. Figure 4a exhibits some correct predictions for all

14 types of defects with high localization accuracies and scores.

Except for them, we also present three wrong predicted defects in

Figure 4b whose ground truth types are given in parentheses. In addi-

tion, Figure 4c shows three missed defects marked by dashed boxes

that the best model was not able to recognize and their ground truth

classes are also given in parentheses.

5 | APPLICATION IN PRODUCTION LINE

5.1 | Feasibility analysis using confusion matrix

Considering that 70.2% mAP50 is not a dramatic result and the various

AP50 values cannot directly reflect the ratios of wrong predictions and

missed defects for each type of them, these results were not able to

give us a clear picture of how well the best model would perform if

used in real production line. So we calculated an object detection

based confusion matrix as given in Table 2 to display the prediction

details and do more analysis. This confusion matrix is a visualization of

AP50 values in a simplified case that predictions with scores lower

than 50% were discarded. It is calculated by matching every ground

truth (G) defects with every model predictions (P) if their IoU values

are greater than 50% and each of ground truth defects and predic-

tions can only be matched once. More computing details can be

acquired from part 1 of the supporting information.

In Table 2, numbers 1–14 represent the 14 types of defects with

first column and row indicating G and P, respectively. The upper

number in each grid describes how many of the corresponding row

type (ground truth) of defects are detected as the corresponding col-

umn type (prediction) of defects. The lower number in each gird is its

proportion calculated within the row and the sum of all proportions in

each row may be 0.1% greater or smaller than 100% due to rounding.

The numbers on the diagonal line represent the correctly predicted

defects while the numbers out of the diagonal line are wrong predic-

tions among different types. Moreover, the numbers and proportions

in the last column ‘Missed’ belong to the defects that are not

predicted by the best model. Besides these information, there is

another case that some defects or parts of cell background that were

not labeled are also predicted by the model and we list them as

‘Unlabeled’ in the last row of Table 2.

As we can observe from Table 2, the proportions of correct pre-

dictions on the diagonal line have similar properties with AP50 values

in column 12 of Table 1 that defects with higher AP50 values tend to

have higher rates to be correctly predicted. Except for them, the

wrong predictions only take tiny shares but the missed defects have

really unignorable proportions which cannot be accepted if used in

real production line. By manually checking these missed defects, we

found that they can be divided into three cases and only the third case

harms the inspection in production line.

The first case is named as recognition biased misses and it has

three subcomponents: (1) close defects that have been separately

labeled are predicted as one, (2) a single defect is recognized into

separate parts, and (3) slight shift of predicted bounding boxes. The

missed defects belonging to these three subcomponents of the first

case were counted into misses in calculations of AP50 and confusion

matrix as their IoU values were lower than 50%, but from the perspec-

tive of practical EL inspection, they are all distinguished from cell

background and thought to be correct predictions since there is no

conception of IoU when doing inspection and the recognition bias is

acceptable in production line.

The second and third cases of missed defects are all true misses,

which means they are not predicted with any bounding boxes by the

best model, but they are a bit different. Before introducing them, we

shall reveal a significant distinction between object detection task and

classification task. Object detection task pursues completeness of

detections and is accurate to each defect, but normal/defective classi-

fication task of a module is an existence problem, which means as long

as a defect that surpasses the screen criteria is correctly predicted,

the module should be classified as defective, even if other defects in

the same module are incorrectly predicted or missed. This phenome-

non is a compensation of detection as the wrong predictions and

missed defects are compensated by the correct predictions and do

not affect the inspection result of the module. So these compensated

misses correspond to the second case, and the uncompensated misses

are the third case in which the module would be wrongly classified as

normal for the incapacity of their predictions.

As for the unlabeled predictions, there are also three cases:

(1) recognition biased predictions that detected labeled defects but

IoU values were lower than 50% due to recognition biases, (2) correct

predictions for unlabeled defects, and (3) wrong predictions for

unlabeled defects or for parts of cell background that were incorrectly

recognized as defects.

We looked into the missed defects and unlabeled predictions one

by one and segregated them into their respective cases through

checking predicted classes and existence of recognition bias and com-

pensation (subimage-scale compensation). The statistics result of pro-

portion distributions of the six cases is given in Figure 5, and for every

type of defects, each amount of three cases for missed defects and

unlabeled predictions corresponds to its number in the last column

and row of Table 2. Besides, we also give specific illustrations of six

cases in supporting information (part 2). As Figure 5 shows, the

uncompensated misses only take small shares while compensated

misses take major parts for almost every type. Moreover, since the

numbers of uncompensated misses were counted on subimages, the

missed defects still have chance to be further compensated by correct

predictions in other subimages in the same module. So at the end,

their influence would fall off to a much lower level. As for the
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unlabeled predictions, the wrong predictions only occupy tiny propor-

tions for each type and are not big issues to concern. According to

these results and analysis, the model surely has the potential to per-

form well in the normal/defective classification of modules in

production line.

5.2 | Screening criteria and classification results

To conduct normal/defective classification in production line, specific

screening criteria should be set to selectively block and release

different types of defects. According to the discussion in Section 2,

different permission degrees were set for the four groups of defects:

(1) fully permitted: finger interruption, (2) conditionally permitted:

scratch with length smaller than half the width of a cell, black area

with area smaller than 20% of the size of a cell and finger block with

area smaller than 10% of the size of a cell, (3) fully forbidden: all other

types of defects. The harm of a single finger interruption to the cell

efficiency and appearance is negligible, and its frequency of

occurrence tends to be high so it is always ignored and released to

ensure capacity of production. Scratch, black area, and finger block

also occur very frequently in production line, and their sizes can vary

a lot so thresholds of length and area are set to block serious ones of

them. We adopted approximations in the calculations that the length

of the diagonal line of a predicted bounding box was used to replace

the length of a scratch, and the area of a bounding box was used to

replace the area of black area and finger block. As for other types

of defects, since they have more serious impact on module

efficiency and safety, they are all set to be forbidden once correctly

predicted.

To test the best model's performance on classification task in

production line, we additionally gathered 4791 EL images of PV mod-

ules taken on 3 days during production. These images included nor-

mal and defective ones, and their numbers were not clear at the

beginning. At first, these modules were inspected and classified into

normal and defective groups by the selected best model on the basis

of screening criteria. Then the experienced leader manually checked

them one by one to determine the values of TP, FP, TN, and FN that

we introduced in Section 3.3, and the statistics result is given in

Table 3. Take the data on day 1 as an example, there were 1562 nor-

mal modules, and the model predicted 1536 (TN) of them as normal

ones while the left 26 (FP) modules were wrongly predicted as defec-

tive ones. There were 276 defective modules, and the model

retrieved 274 (TP) of them with only 2 (FN) missed. According to the

Equations (1) and (2), we achieved a good result of precision (91.3%),

which means among the modules that the model predicted as defec-

tive, 91.3% of them were truly defective, and a marvelous value of

recall (99.3%), which shows 99.3% of the ground truth defective

modules were successfully retrieved. As we know, recall is more

important for inspection in production line since once a defective

module is mistakenly released, it becomes a final product and the

defects in it cannot be checked anymore. Hence, the recall value of

99.3% is extremely reliable to block as many defective modules as

possible. The model also yielded from Equation 3 a great F1 score

(95.1%) as a balance of precision and recall. Except for the precision,

recall and F1 score results commonly used in literature, we also

achieved very low MDR (0.1%) and FDR (1.4%) that production line

cares about according to the Equations (4) and (5). They are both,

respectively, below the two thresholds (0.2% and 2%) so the perfor-

mance of the best model reaches the standard of production line.

However, the distances between the two rates and their thresholds

are not obvious, which means the results may not be always reliable

if practically applied, just as the other two MDRs on day 2 (0.2%)

and day 3 (0.3%) shown. In this case, some unconventional and

empirical tricks were used to additionally lower the MDR and FDR,

such as manually adjusting confidence thresholds and setting bright-

ness thresholds for different types of defects according to the missed

and wrong detections, so that some of them can be corrected and

F IGURE 5 Proportion distributions of the
special cases for the missed defects and unlabeled
predictions in Table 2
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the results are continuously eligible for 2 weeks' check before finally

deploying the model in line. Further description of the adjustments

will be very trivial and not expanded in this paper. Furthermore, con-

sidering the existence of detection compensation, we counted the

numbers of compensated modules in which some of the defects are

missed but compensated by other correct predictions in the same

module, and it was 24 with corresponding compensation rates of

8.8% for the data on day 1. Generally, this compensation rate was

not too high which means the defects on most of the TP modules

were completely predicted. Finally, we can conclude that our deep

learning based automatic detection of multi-type defects presented

in this paper surely has a highly promising potential to be directly

adopted in production line according to the model results in Table 3.

In fact, we have been deploying this technique in plants of Chinese

companies with capacity up to 15GWp per year to automatically

inspect the PV modules.

However, we cannot ignore the fact that there are still some

limitations of our method. First, although the corresponding

compensation rates of 8.8%, 14.1%, and 24.6% for 3 days are not

too high, they still indicate that defects in small parts of the TP

modules have not been completely predicted. The present best

model still has room to be improved to lower these compensation

rates and pursue higher AP values at the same time. Possible solu-

tions include using better augmentation strategy, adopting more

complicated deep learning structures, gathering and labeling more

EL images of defective modules with minor defects. Second, just

as Greulich et al.,29 recently studied, the reproducibility problem of

human labeling does exist that our four well trained people surly

have divergence of some ambiguous defects and some of them

were wrongly labeled or forgot to label. Although the four people

would discuss about the ambiguities and an appointed experienced

leader would make the decision, mistakes were not evitable. But

human labeling seems not replaceable in the short term, especially

for large projects with many different categories of objects. Luckily,

some assistant auto-labeling skills like smart labeling proposed by

Kunze et al.30 may improve the labeling efficiency and accuracy to

some extent in future work.

6 | CONCLUSION

In this paper, we firstly introduced 19 types of defects that we labeled

in 5983 EL images of defective PV modules, divided them into four

groups according to their influence degree, and chose the top 14 as

research objects. Next, we trained Mask R-CNN with ResNet-

101-FPN backbone and selected a best model with highest mAPall

value on validation set. Meanwhile, we also found that improving pro-

portions of minor defects through copy has unstable effects for

themselves and negative influence for some other types, and

averagely, the best model with highest mAPall value turned out to take

place when only flip was applied. Then we measured the best model's

performance on test set and achieved 70.2% mAP50 value. We found

four types of defects have lower than 60% AP50 values, among which

scratch and finger interruption that barely influence module efficiency

are just the two most difficult defects for the CNN to learn. We

inferred variations in length, severity, and radian of scratch and slight

features of finger interruption are the reasons why the model cannot

learn them well, but more specific researches should be down in

future to give precise explanation. In addition, the best model gener-

ally performs well on other defects of different influence degrees,

except for certain types with limited samples such as belt drop and

brightness saltation. To further display the prediction details and

analyze the feasibility of applying the best model in real production

line, we calculated an object detection based confusion matrix and

discovered three special cases for both missed defects and unlabeled

predictions. On the one hand, among the missed defects, only

uncompensated misses harm the normal/defective classification in

production line and they just take small shares for each type of

defects. On the other hand, wrong predictions also occupy tiny parts

in unlabeled predictions, so the model's performance in production

line would be much better than 70.2% mAP50 value showed. Finally,

we set screening criteria for different types of defects to selectively

block and release them and conducted the normal/defective classifi-

cation task on the additionally collected 4791 EL images of PV mod-

ules on 3 days in production line. We successfully achieved superior

F1 scores of 95.1%, 96.0%, and 97.3%, together with marvelous recall

TABLE 3 Normal/defective classification results on additional 4791 EL images of PV modules taken on 3 days

Ground truth

Prediction

Day 1 Day 2 Day 3

Normal modules Defective modules Normal modules Defective modules Normal modules Defective modules

Normal modules 1536 (TN) 26 (FP) 1503 (TN) 19 (FP) 786 (TN) 16 (FP)

Defective modules 2 (FN) 274 (TP) 4 (FN) 277 (TP) 3 (FN) 345 (TP)

Precision 91.3% 93.6% 95.6%

Recall 99.3% 98.6% 99.1%

F1 score 95.1% 96.0% 97.3%

MDR (<0.2%) 0.1% 0.2% 0.3%

FDR (<2%) 1.4% 1.1% 1.4%

Compensation rate 8.8% (24/274) 14.1% (39/277) 24.6% (85/345)
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values of 99.3%, 98.6%, and 99.1% (i.e., the model retrieved almost all

of the defective modules) and quite good precision results of 91.3%,

93.6%, and 95.6%. Meanwhile, we also realized very low MDR (0.1%)

and FDR (1.4%) that production line cares about and used supplemen-

tary tricks to keep them stably eligible before deploying the model in

line. At the end, we can conclude that our deep learning based auto-

matic detection of multi-type defects surly has a highly promising

potential to be directly adopted in real production line.
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